\mathscr{M} -SUBSPACES OF X_{λ}

HONG OH KIM AND ERN GUN KWON

1. Introduction

Throughout this paper, n is a fixed positive integer, p, q, s, t nonnegative integers and α , λ are complex numbers related by $\lambda = -4n^2\alpha(1-\alpha)$.

1.1. Invariant Laplacian $\tilde{\Delta}$. *B* denotes the open unit ball of \mathbb{C}^n with its boundary ∂B and Aut(*B*) the group of all bijective holomorphic maps of *B* onto itself. The invariant Laplacian $\tilde{\Delta}$ is defined by

$$(\tilde{\Delta}f)(z) = 4(1-|z|^2)\sum_{j,k=1}^n (\delta_{jk}-z_j\bar{z}_k)\frac{\partial^2 f}{\partial z_j \partial \bar{z}_k}(z), \quad f \in C^2(B),$$

where δ_{jk} is the Kronecker's symbol. It is invariant under Aut(B) in the sense that

$$\tilde{\Delta}(f\circ\varphi)=(\tilde{\Delta}f)\circ\varphi, \ \ \varphi\in\operatorname{Aut}(B).$$

1.2. \mathscr{H}_s and H(p,q). \mathscr{H}_s denotes the space of all homogeneous polynomials on \mathbb{C}^n of degree s that satisfy $\Delta f = 0$ where

$$\Delta = 4 \sum_{j=1}^{n} \frac{\partial^2}{\partial z_j \, \partial \bar{z}_j}$$

is the ordinary Laplacian. The term "homogeneous" refers here to real scalars: $f(tz) = t^s f(z), t > 0$.

Being harmonic, each $f \in \mathscr{H}_s$ is uniquely determined by its restriction on ∂B . These restrictions are so-called spherical harmonics. We shall freely identify \mathscr{H}_s with its restrictions on ∂B .

H(p,q) denotes the vector space of all harmonic homogeneous polynomials on \mathbb{C}^n that have total degree p in the variables z_1, \ldots, z_n and total degree q in the variables $\bar{z}_1, \ldots, \bar{z}_n$. Some of the basic properties of H(p,q)

© 1993 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received September 13, 1991.

¹⁹⁹¹ Mathematics Subject Classification. Primary 31B35.