SOME REMARKS ON EXTENSION THEOREMS FOR WEIGHTED SOBOLEV SPACES

SENG-KEE CHUA

1. Introduction

Let \mathscr{D} be an open set in \mathbb{R}^n . If α is a multi-index, $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n) \in \mathbb{Z}^n_+$, we will denote $\sum_{i=1}^n \alpha_i$ by $|\alpha|$ and let

$$D^{\alpha} = \left(\frac{\partial}{\partial x_1}\right)^{\alpha_1} \dots \left(\frac{\partial}{\partial x_n}\right)^{\alpha_n}.$$

A locally integrable function f on \mathcal{D} has a weak derivative of order α if there is a locally integrable function (denoted by $D^{\alpha}f$) such that

$$\int_{\mathscr{D}} f(D^{\alpha}\varphi) \, dx = (-1)^{|\alpha|} \int_{\mathscr{D}} (D^{\alpha}f) \varphi \, dx$$

for all C^{∞} functions φ with compact support in \mathscr{D} (we will write $\varphi \in C_0^{\infty}(\mathscr{D})$).

By a weight w, we mean a nonnegative locally integrable function on \mathbb{R}^n . By abusing notation, we will also write w for the measure induced by w. Sometimes we write dw to denote w dx. We always assume w is doubling, by which we mean $w(2Q) \leq Cw(Q)$ for every cube Q, where 2Q denotes the cube with the same center as Q and twice its edgelength. Let μ be another weight. By $w/\mu \in A_p(\mu)$, we mean

$$\frac{1}{\mu(Q)} \left(\int_Q \frac{w}{\mu} d\mu \right)^{1/p} \left(\int_Q \left(\frac{w}{\mu} \right)^{-1/(p-1)} d\mu \right)^{(p-1)/p} \le C \text{ when } 1
$$\frac{\mu(x)}{\mu(Q)} \le C \frac{w(x)}{w(Q)} \text{ a.e. when } p = 1,$$$$

for all cubes Q in \mathbb{R}^n . If Q is a cube, let l(Q) be the edgelength of Q. For $1 \le p \le \infty, k \in \mathbb{N}$, and any weight $w, L^p_{w,k}(\mathcal{D})$ and $E^p_{w,k}(\mathcal{D})$ are the spaces

© 1994 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received Feb. 11, 1992.

¹⁹⁹¹ Mathematics Subject Classification. Primary 46E35.