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FEJER THEOREMS ON COMPACT SOLVMANIFOLDS

CAROLYN PFEFFER

Section 1. Introduction

In the theory of Fourier series, it is well known that if f L2(T) is
continuous, where T is the unit circle), then the Fourier series

g(x) E f(n)e
n t.Z

2 nx

need not converge uniformly or even pointwise to f. However, the Fejer
theorem asserts that there exists a set of constants {an, k},k= a, such that for
each fixed n only finitely many k differ from 0, and so that if we define

On(X ) y’ an, kf(k)e
kZ

2,n’ikx

then tr f uniformly on T.
We note that the map f f(n)e2"rrinx is an orthogonal projection onto a

subspace of L2(T)which is translation-invariant; if A denotes the quasi-regu-
lar representation of R in L2(T), then A restricted to the subspace {Ce2"r’inx}
is equivalent to an irreducible representation of R.

Similarly, if S is a solvable Lie group with cocompact discrete subgroup F,
the right quasiregular representation decomposes L2(S/F) into a countable
direct sum of orthogonal irreducible subspaces. Those irreducible representa-
tions of S which appear in the decomposition may appear with multiplicity,
always finite. Although the decomposition of L2(S/F) isn’t unique, the direct
sum of all irreducible 7r-spaces is independent of the decomposition; we call
it the primary summand of 7r. We order the primary summands {Hn} and let
P denote orthogonal projection onto the nth primary summand.

In this paper we address the question of whether Fejer theorems exist for
the three-dimensional compact solvmanifolds which are quotients of the
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