INTERMITTENT OSCILLATION AND TANGENTIAL GROWTH OF FUNCTIONS WITH RESPECT TO NAGEL-STEIN REGIONS ON A HALF-SPACE

ROBERT BERMAN AND DAVID SINGMAN

1. Introduction

Let n be a positive integer and denote the upper half-space $\mathbf{R}^n \times (0, \infty)$ in \mathbf{R}^{n+1} by \mathbf{R}^{n+1}_+ . The boundary $\partial \mathbf{R}^{n+1}_+$ of \mathbf{R}^{n+1}_+ will be identified, in the usual way, with \mathbf{R}^n . In the discussion below, we shall transpose (without explicit mention) results originally stated relative to the unit disk and its circumference in the complex plane, to the upper half-space \mathbf{R}^{n+1}_+ and its boundary \mathbf{R}^n in \mathbf{R}^{n+1} .

In 1968, Å. Samuelsson [Sa] studied, for n=1, the generalized derivatives of positive, Borel measures μ defined on \mathbf{R}^n in relation to growth along the normal $N_x = \{(x, t): 0 < t < \infty\}$ of the positive harmonic functions $\mathcal{K}\mu$ associated by means of the Poisson integral formula,

(1)
$$\mathscr{K}\mu(x,t) = \int_{\mathbf{R}^n} K(x,t,z) \, d\mu(z), \qquad (x,t) \in \mathbf{R}^{n+1}_+.$$

Here, K(x, t, z), for $x, z \in \mathbb{R}^n$ and $t \in (0, \infty)$, denotes the Poisson kernel for the upper half-space \mathbb{R}^{n+1}_+ , and the measures μ satisfy the usual integral condition required for the convergence of the Poisson integral. Among other things, Samuelsson considered generalized upper symmetric derivatives of μ with respect to functions such as $\omega(t) = t^{\beta}$, $0 < \beta < 1$, at a point $x \in \mathbb{R}$, defined by

$$\overline{D}_{\omega}\mu(x) = \limsup \frac{|\mu(I)|}{\omega(|I|)},$$

where the intervals I are centered at x and the limit superior is taken as their lengths |I| converge to 0. When $\overline{D}_{\omega}\mu(x)$ is positive, there is a sequence of intervals $\{I_j\}$ centered at x such that $|I_j| \to 0$ and $\mu(I_j)$ is (at least) of the order of $\omega(|I_j|)$. One may describe this roughly by saying that μ has

Received December 2, 1991.

¹⁹⁹¹ Mathematics Subject Classification. Primary 31B25. Secondary 42B25.