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RESTRICTIONS OF FOURIER TRANSFORMS TO FLAT
CURVES IN R?
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1. Introduction

Given a smooth (lower-dimensional) submanifold S of R” and a smooth
compactly supported measure o on S, one may ask for what values of p and
g an a priori estimate of the form

(1.1) 1Asll oy < C, lIflemn YfE A(RY)

holds, where ﬂs denotes the restriction of the Fourier transform of f to §,
and #(R") is the Schwartz class of functions. Estimates of this type are
known as restriction theorems. Note that if p = 1 the estimate holds trivially
(for any g). On the other hand, if p = 2 such an estimate cannot hold, since
S has Lebesgue measure zero in R”. E. M. Stein was the first to observe that
a restriction theorem holds for g =2 and some p > 1 when § is the
n-sphere, or more generally, when an estimate of the form

(1.2) IG(&)l < C(1 + 1¢£1),° Ve e R

holds with some & > 0 for the Fourier transform of the measure o on S (see
[F1, [SD. The estimate (1.2) holds, for instance, if S is of finite type, namely
each point of § has at most a finite order contact with any hyperplane.
Hence it follows that (1.1) holds for all finite type S with g =2 and a
nontrivial p, that is, some p € (1,2). See [S] for more details. Also see
[FL[T], [Z], [C],[DM], [So] and further references cited in those works.

On the other hand, it is well known that a nontrivial restriction estimate
need not hold if the curvature vanishes to infinite order at some point of S in
such a way that (1.2) should fail—we will call such S (infinitely) flat. (So the
surface of a circular cylinder, say, is not flat, since (1.2) holds for it.) For
example, if S is the flat curve in R? given as the graph of the function
y(t) = e~1/** near the origin, then a homogeneity argument shows that (1.1)
fails for every p > 1. However, in this paper we show that an analog of (1.1)
does hold for a class of strictly convex curves whose curvature vanishes, to
infinite (or finite) order, at the origin, where the L? space on the right side of
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