CODIMENSION REDUCTION THEOREMS IN CONFORMAL GEOMETRY

GIULIANO ROMANI¹

Introduction

We give the proof of the analogue, in conformal geometry, of the local version of the Theorem of Erbacher [E], and of theorems related to it.

The theorems obtained can also be viewed as the extension of classical theorems on reduction of codimension of a submanifold of a space of constant curvature to the case of a submanifold of a space locally conformal to a space of constant curvature that is locally conformally flat.

We start from the investigation of the geometric meaning of the nullity of the Willmore conformal forms, \dot{w}_M , of a submanifold M. These conformal forms, introduced in [R], are invariant under conformal changes of the metric of the ambient space \overline{M} .

We prove:

THEOREM. Let \overline{M} be a locally conformally flat manifold. If M is a submanifold of \overline{M} conformally nicely curved in \overline{M} , then $\overset{*}{w}_{M}$ is zero if and only if M is locally contained in a totally unbilical submanifold of \overline{M} of dimension $p = \prod_{r+1}^{r+1} \prod_{r+1}^{r+1} (r+1)$ -conformal osculating space).

From the theorem, we deduce the local conformal version of the Erbacher Theorem (recently proved by Okomura [O] in the case of \overline{M} of constant curvature).

COROLLARY III. Let \overline{M} be locally conformally flat and M a submanifold of \overline{M} . If $\widehat{W}_x M$ has constant dimension and is parallel in the normal bundle of M, then M is locally contained in a totally umbilical submanifold of \overline{M} of dimension $p = \dim M + \dim \widehat{W}_x M$ ($\widehat{W}_x M$ first Willmore space).

Introducing the notion of *conformally parallel distribution along a submanifold*, the analogue in conformal geometry of the notion of parallel distribution along a submanifold in Riemannian geometry, we are able to prove the

© 1994 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received March 25, 1992.

¹⁹⁹¹ Mathematics Subject Classification. Primary 53A30; Secondary 53B25.

¹Work supported by the M.U.R.S.T. 60% and 40%.