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Introduction

We give the proof of the analogue, in conformal geometry, of the local
version of the Theorem of Erbacher [E], and of theorems related to it.
The theorems obtained can also be viewed as the extension of classical

theorems on reduction of codimension of a submanifold of a space of
constant curvature to the case of a submanifold of a space locally conformal
to a space of constant curvature that is locally conformally fiat.
We start from the investigation of the geometric meaning of the nullity of

the Willmore conformal forms, &M, of a submanifold M. These conformal
forms, introduced in [R], are invariant under conformal changes of the metric
of the ambient space M.
We prove:

THEOREM. Let M be a locally conform_.ally flat manifold. IfM is a submani-
fold of conformally nicely curved in M, then (vM is zero if and only if M is
locally contained in a totally unbilical submanifold of M of dimension p

r+l r+l
dim fxM ( flxM, (r + 1)-conformal osculating space).

From the theorem, we deduce the local conformal version of the Erbacher
Theorem (recently proved by Okomura [O] in the case of M of constant
curvature).

COROLLARY III. Let M be locally conformally flat and M a submanifold of
M. If WxM has constant dimension and is parallel in the normal bundle of M,
then M is locally contained in a totally umbilical submanifold ofM of dimension
p dim M + dim WxM (WxMfirst Willmore space).

Introducing the notion of conformally parallel distribution along a submani-
fold, the analogue in conformal geometry of the notion of parallel distribu-
tion along a submanifold in Riemannian geometry, we are able to prove the
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