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PETTIS INTEGRALS AND SINGULAR INTEGRAL
OPERATORS
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Introduction

The present note is concerned with conditions guaranteeing the integrabil-
ity of operator valued functions acting on spaces L’(Rn) for 1 < p < oo. To
set the stage, some definitions and notation need to be fixed. Let E be a
locally convex space. Let (f, ’,/x) be a measure space. A scalarly/x-mea-
surable function " f E is said to be Pettis ix-integrable if

for every s E’, and for every A a, there exists a vector /x(A) E
such that (/x(A), s) fA((to), st) d/x(to) for all s E’. In the context of
Banach spaces, the notion of a vector valued function being integrable in this
sense is, perhaps, less widely used than the familiar notion of Bochner
integrability. If X is a Banach space with norm I1" II, then a function :
f--, X is said to be strongly ix-measurable if it is the limit /z-a.e. of a
sequence of X-valued --simple functions. If is strongly /x-measurable,
then the function II I1: --’ [0, oo) defined by (o,)  ( o)II for all
to fZ is /x-measurable, and is said to be Bochner tz-integrable if
fllq’ll d/x < oo. In this case, there exist X-valued e-simple functions sm,
rn 1,2,..., such that limm_,oo fllq -Smll d/z 0, and so for each A
a, if /x(A) E is defined by

/z(A) moolim fASm dtx,

then

(*/z(A), ) fn(*(to), ) d/z(to)

for all sr X’, as required for the definition of Pettis integrability.
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