PETTIS INTEGRALS AND SINGULAR INTEGRAL OPERATORS

BRIAN JEFFERIES AND SUSUMU OKADA

Introduction

The present note is concerned with conditions guaranteeing the integrability of operator valued functions acting on spaces $L^{p}(\mathbb{R}^{n})$ for 1 . Toset the stage, some definitions and notation need to be fixed. Let <math>E be a locally convex space. Let $(\Omega, \mathscr{S}, \mu)$ be a measure space. A scalarly μ -measurable function $\Psi: \Omega \to E$ is said to be *Pettis* μ -integrable if

$$\int_{\Omega} \left| \langle \Psi(\omega), \xi \rangle \right| d\mu(\omega) < \infty,$$

for every $\xi \in E'$, and for every $A \in \mathscr{S}$, there exists a vector $\Psi\mu(A) \in E$ such that $\langle \Psi\mu(A), \xi \rangle = \int_A \langle \Psi(\omega), \xi \rangle d\mu(\omega)$ for all $\xi \in E'$. In the context of Banach spaces, the notion of a vector valued function being integrable in this sense is, perhaps, less widely used than the familiar notion of Bochner integrability. If X is a Banach space with norm $\|\cdot\|$, then a function Ψ : $\Omega \to X$ is said to be *strongly* μ -measurable if it is the limit μ -a.e. of a sequence of X-valued \mathscr{S} -simple functions. If Ψ is strongly μ -measurable, then the function $\|\Psi\|$: $\Omega \to [0, \infty)$ defined by $\|\Psi\|(\omega) = \|\Psi(\omega)\|$ for all $\omega \in \Omega$ is μ -measurable, and Ψ is said to be Bochner μ -integrable if $\int_{\Omega} \|\Psi\| d\mu < \infty$. In this case, there exist X-valued \mathscr{S} -simple functions s_m , $m = 1, 2, \ldots$, such that $\lim_{m \to \infty} \int_{\Omega} \|\Psi - s_m\| d\mu = 0$, and so for each $A \in \mathscr{S}$, if $\Psi\mu(A) \in E$ is defined by

$$\Psi\mu(A)=\lim_{m\to\infty}\int_A s_m\,d\mu\,,$$

then

$$\langle \Psi\mu(A),\xi\rangle = \int_{\Omega} \langle \Psi(\omega),\xi\rangle d\mu(\omega)$$

for all $\xi \in X'$, as required for the definition of Pettis integrability.

Received February 28, 1992

1991 Mathematics Subject Classification. Primary 28B05; Secondary 45P05.

© 1994 by the Board of Trustees of the University of Illinois Manufactured in the United States of America