HANKEL OPERATORS ON WEIGHTED BERGMAN SPACES ON STRONGLY PSEUDOCONVEX DOMAINS

MARCO M. PELOSO¹

Introduction

Let Ω be a C^{∞} -bounded strongly pseudoconvex domain, $\Omega = \{z \in \mathbb{C}^n : \rho(z) < 0\}, n > 1$. For $\nu > -1$, let $dm_{\nu} = |\rho(z)|^{\nu} dm$, where dm is the Lebesgue volume form. Let L^2_{ν} be the L^2 -space $L^2(\Omega, dm_{\nu})$. We consider the weighted Bergman space $A^{2,\nu}(\Omega)$, the closed subspace of L^2_{ν} consisting of the holomorphic functions. The orthogonal projection of L^2_{ν} onto $A^{2,\nu}$ will be denoted by P. Together with P we will consider a non-orthogonal projection \tilde{P} of L^2_{ν} onto $A^{2,\nu}$, given by an explicit integral kernel G(z, w). Such a kernel, and projection, have been introduced by Kerzman and Stein in [16], and studied by Ligocka in [14] and [15], and by Coupet in [6].

In this paper we consider the Hankel operator, and the so called *non-orthogonal* Hankel operator, denoted by H_f and \tilde{H}_f respectively, and defined by

$$H_f g(z) = (I - P)(\bar{f}g)(z),$$

and

$$\tilde{H}_f g(z) = (I - \tilde{P})(\bar{f}g)(z).$$

The Hankel operators on Bergman spaces are considered to be classical by now. In [1] Axler proved that if f is holomorphic, then the Hankel operator H_f on the unweighted Bergman space $A^2(D)$ on the unit disc D, is bounded (respectively compact) if and only if f is a Bloch function (resp. a little Bloch function). About the same time, in [3] Arazy, Fisher, and Peetre proved the same characterization about boundedness and compactness for H_f in the case of the weighted Bergman spaces on the unit disc for f an analytic symbol. Moreover Arazy, Fisher, and Peetre proved that H_f belongs to the Schatten ideal \mathscr{I}_p if and only if f is in a certain Besov space. These pioneering results have been extended in various directions. In [21] Zhu studied the Hankel operators H_f and $H_{\tilde{f}}$ on the unweighted Bergman space

 $\ensuremath{\mathbb{C}}$ 1994 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received February 28, 1992.

¹⁹⁹¹ Mathematics Subject Classification. 32A37, 47B35, 47B10, 46E22.

¹Author partially supported by Institut Mittag-Leffler and Instituto Nazionale di Alta Matematica.