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THE HENSTOCK AND MCSHANE INTEGRALS OF
VECTOR-VALUED FUNCTIONS

D.H. FREMLIN

Introduction

A familiar formula from undergraduate analysis is the ’Riemann sum’
.g=lf(ti)(bi- bi_ 1) Of a function f with respect to a tagged partition
0 b0 _< _< b _< _< t _< b 1 of [0, 1]. One of the standard defini-
tions of the Riemann integral describes it as the limit of such sums as
max (bg bg_ 1) 0. It is a remarkable fact that the same formula may
be used to define a vastly more powerful integral, if we take a different
limiting process. Instead of requiring all partitions with maxg(b bi_ 1) -< 80
to give good approximations to the integral, we can restrict our attention to
those in which b- bi_ <_ t(ti) for each i, where 8 is a strictly positive
function on [0, 1]. (See 1(c) below.) This refinement yields the ’Henstock’ or
’Riemann-complete’ integral; it agrees with the Lebesgue integral on non-
negative functions but extends it on others (see 4(e) below). An ingenious
modification of the construction, due to E.J. McShane, allows the to lie
outside the corresponding intervals (see l(b)); this brings us back a step, to
the Lebesgue integral precisely.
A common feature of the Riemann, McShane and Henstock integrals is

that the use of Riemann sums gives us obvious formulations of integrals for
vector-valued functions defined on [0, 1]. For the McShane and Henstock
integrals I spell these out in 1(b-c) below. The Henstock integral obviously
extends the McShane integral. In this paper I seek to elucidate the nature of
this extension; in particular, to give criteria to distinguish McShane inte-
grable functions among the Henstock integrable functions. In the real-valued
case this is simple enough; a Lebesgue integrable function is just a Henstock
integrable function with (Henstock) integrable absolute value; equivalently, a
Henstock integrable function which is Henstock integrable over every mea-
surable set. It turns out that the latter criterion is valid in the vector-valued
case (Corollary 9 below). I give priority however to a more economically
expressible result in terms of the Pettis integral: a vector-valued function is
McShane integrable iff it is both Henstock integrable and Pettis integrable
(Theorem 8). The Pettis integral being the widest of the standard integrals of
vector-valued functions (see [7]), this suggests that the difference between the
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