THE MULTIPLIER OPERATORS ON THE PRODUCT SPACES

LUNG-KEE CHEN

Introduction

Let $H^p(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2})$ be the Hardy space defined on the product spaces (for more details, see [1]) and let a function $a(x_1, x_2)$ denote a rectangle p atom on $H^p(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2})$ if (i) the $a(x_1, x_2)$ is supported on a rectangle $\mathbb{R} = I \times J$ (I and J are cubes on \mathbb{R}^{n_1} and \mathbb{R}^{n_2} respectively), (ii) $||a||_2 \leq |\mathbb{R}|^{1/2 - 1/p}$ and (iii) one picks and fixes two sufficiently large positive integers k and l(depending on p) such that

 $\int_{I} x_{1}^{\alpha} a(x_{1}, x_{2}) dx_{1} = 0 \quad \text{for all } x_{2} \in J \text{ and } |\alpha| \le k$ $\int_{J} x_{2}^{\beta} a(x_{1}, x_{2}) dx_{2} = 0 \quad \text{for all } x_{1} \in I \text{ and } |\beta| \le l.$

In the paper [3], R. Fefferman gave a very powerful theorem (see Theorem 1) for studying the boundedness on the $H^p(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2})$ spaces of a linear operator. In his theorem, it mentioned that to consider the boundedness on H^p of a linear operator one only needs to look at the boundedness of the linear operator acting on the rectangle p atoms. This is true despite the counterexample of L. Carleson which shows that the space $H^p(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2})$ cannot be decomposed into rectangle atoms.

We will use \wedge to denote the Fourier Transform and \wedge_1 to denote the Fourier Transform acting on the first variable. Throughout this paper, C represents a constant, although different in different places. T_m denotes the multiplier operator associated with the multiplier m, i.e.,

$$\overline{T_m}\overline{f}(\xi,\eta)=m(\xi,\eta)\overline{f}(\xi,\eta).$$

THEOREM 1 (R. Fefferman [3]). Suppose that T is a bounded linear operator on $L^2(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2})$. Suppose further that if a is an $H^p(\mathbb{R}^{n_1} \times \mathbb{R}^{n_2})$

Received June 25, 1992

1991 Mathematics Subject Classification. Primary 42B15; Secondary 42B30.

© 1994 by the Board of Trustees of the University of Illinois Manufactured in the United States of America