KNOTS AND SHELLABLE CELL PARTITIONINGS OF $\boldsymbol{S}^{\mathbf{3}}$

Steve Armentrout

A cell partitioning of S^{3} is a finite covering H of S^{3} by 3-cells such that if m is any positive integer and exactly m 3-cells of H intersect, their common part is a cell of dimension $4-m$, where cells of negative dimension are empty. The 3-cells of a cell partitioning of S^{3} fit together in a staggered, brick-like pattern.

A cell partitioning H of S^{3} is shellable if and only if there is a counting $\left\langle h_{1}, h_{2}, \cdots, h_{n}\right\rangle$ of H such that if i is an integer and $1 \leqq i<n$, then $h_{1} \cup h_{2} \cup \cdots \cup h_{i}$ is a 3-cell. Such a counting is a shelling of H.

In this paper, we shall study a connection between knots in S^{3} and shellability of cell partitionings of S^{3}. We shall use these results to construct nonshellable cell partitionings of S^{3}.

Our results involve the use of the bridge number of a knot in S^{3}. In Section 1 of this paper, we shall review some results concerning knots in S^{3} and bridge numbers of knots in S^{3}. In Section 2, we shall establish the main result of the paper. In Section 3, we shall establish a variant of the main result that is useful in some situations. In Section 4, we shall use the results of this paper to construct a nonshellable cell partitioning of S^{3} and, as a variation on that construction, a nest of nonshellable cell partitionings of S^{3}.

Throughout this paper, we shall assume that S^{3} has its standard piecewise linear structure.

The author thanks the referee for suggestions and corrections.

1. Knots in S^{3}

A knot in S^{3} is a polygonal simple closed curve in S^{3}. Two knots k and l in S^{3} are of the same knot type in S^{3} if and only if there is an orientation preserving PL homeomorphism $f: S^{3} \rightarrow S^{3}$ such that $f(k)=l$. A knot in S^{3} is trivial if and only if it has the same knot type as the boundary of a 2-simplex in S^{3}.

Suppose C is a 3-cell. Then α is a spanning arc of C if and only if α is an arc in C such that $\mathrm{Bd} \alpha \subset \mathrm{Bd} C$ and Int $\alpha \subset \operatorname{Int} C . D$ is a semispanning disc of C if and only if D is a disc in C such that Int $D \subset \operatorname{Int} C$ and $D \cap \operatorname{Bd} C$ is an arc on $\mathrm{Bd} C$. The statement that β is a straight spanning arc of C means that β is a spanning arc of C and there is a semispanning disc D of C such that $\beta \subset \operatorname{Bd} D$. Recall that if β is a polyhedral straight spanning arc of a

[^0]
[^0]: Received February 28, 1991.
 1991 Mathematics Subject Classification. Primary 57M50; Secondary 57M25.

