KNOTS AND SHELLABLE CELL PARTITIONINGS OF S³

STEVE ARMENTROUT

A cell partitioning of S^3 is a finite covering H of S^3 by 3-cells such that if m is any positive integer and exactly m 3-cells of H intersect, their common part is a cell of dimension 4 - m, where cells of negative dimension are empty. The 3-cells of a cell partitioning of S^3 fit together in a staggered, brick-like pattern.

A cell partitioning H of S^3 is *shellable* if and only if there is a counting $\langle h_1, h_2, \dots, h_n \rangle$ of H such that if i is an integer and $1 \leq i < n$, then $h_1 \cup h_2 \cup \dots \cup h_i$ is a 3-cell. Such a counting is a *shelling* of H.

In this paper, we shall study a connection between knots in S^3 and shellability of cell partitionings of S^3 . We shall use these results to construct nonshellable cell partitionings of S^3 .

Our results involve the use of the bridge number of a knot in S^3 . In Section 1 of this paper, we shall review some results concerning knots in S^3 and bridge numbers of knots in S^3 . In Section 2, we shall establish the main result of the paper. In Section 3, we shall establish a variant of the main result that is useful in some situations. In Section 4, we shall use the results of this paper to construct a nonshellable cell partitioning of S^3 and, as a variation on that construction, a nest of nonshellable cell partitionings of S^3 .

Throughout this paper, we shall assume that S^3 has its standard piecewise linear structure.

The author thanks the referee for suggestions and corrections.

1. Knots in S^3

A knot in S^3 is a polygonal simple closed curve in S^3 . Two knots k and l in S^3 are of the same knot type in S^3 if and only if there is an orientation preserving PL homeomorphism $f: S^3 \to S^3$ such that f(k) = l. A knot in S^3 is trivial if and only if it has the same knot type as the boundary of a 2-simplex in S^3 .

Suppose C is a 3-cell. Then α is a spanning arc of C if and only if α is an arc in C such that Bd $\alpha \subset$ Bd C and Int $\alpha \subset$ Int C. D is a semispanning disc of C if and only if D is a disc in C such that Int $D \subset$ Int C and $D \cap$ Bd C is an arc on Bd C. The statement that β is a straight spanning disc D of C means that β is a spanning arc of C and there is a semispanning disc D of C such that $\beta \subset$ Bd D. Recall that if β is a polyhedral straight spanning arc of a

 $\ensuremath{\mathbb{C}}$ 1994 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received February 28, 1991.

¹⁹⁹¹ Mathematics Subject Classification. Primary 57M50; Secondary 57M25.