ON AN INTEGRAL OPERATOR AND ITS SPECTRUM

JOAQUIN BUSTOZ, MOURAD E. H. ISMAIL¹ AND JIFENG MA

1. Introduction

The action of the differential operator d/dx on the ultraspherical polynomials (spherical harmonics) $C_n^{\nu}(x)$ is given by

(1.1)
$$\frac{d}{dx}C_n^{\nu}(x) = 2\nu C_{n-1}^{\nu+1}(x).$$

This was used in [6] to provide a right inverse to d/dx. In this note we study the corresponding question for the Pollaczek polynomials $\{P_n^{\nu}(x; a, b)\}$ [3]. Recall [3] that the Pollaczek polynomials have the generating function

(1.2)
$$\sum_{n=0}^{\infty} P_n^{\nu}(x;a,b)t^n = (1-te^{i\theta})^{-\nu+ih(x)}(1-te^{-i\theta})^{-\nu-ih(x)},$$

with

(1.3)
$$h(x) := \frac{ax+b}{\sqrt{1-x^2}}, \qquad x = \cos\theta.$$

The branch of the square root is the branch that makes $\sqrt{x^2 - 1} \approx x$ as $x \to \infty$. Here

$$e^{i\theta} = x + \sqrt{x^2 - 1}.$$

The orthogonality relation of the Pollaczek polynomials is

(1.5)
$$\int_{-1}^{1} P_{m}^{\nu}(x;a,b) P_{n}^{\nu}(x;a,b) \rho(x;\nu) dx = \frac{2\pi \Gamma(n+2\nu)\delta_{m,n}}{2^{2\nu}(n+a+\nu)n!},$$

and the weight function $\rho(x; v)$ is

.

(1.6)
$$\rho(x;\nu) = (1-x^2)^{\nu-1/2} e^{(2\theta-\pi)h(x)} \Gamma(\nu+ih(x)) \Gamma(\nu-ih(x)).$$

The parameters a, b, v are assumed to satisfy

(1.7)
$$a > |b|$$
 and $v > 0$.

© 1996 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received August 29, 1995.

¹⁹⁹¹ Mathematics Subject Classification. Primary 33C56 ; Secondary 45A05.