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1. Introduction

A partition of a non-negative integer n is a non-increasing sequence of positive
integers whose sum is n. It is of interest to examine the number of partitions of
n under some additional restriction on the summands. Various partition functions
arise in the representation theory of permutation groups (see [2]). For example, if
p is prime, then let be (n) denote the number of partitions of a non-negative integer
n where the summands are not multiples of p. If n is a positive integer, then bp (n)
denotes the number of irreducible representations of the symmetric group Sn over the
finite field with p elements [2, Lemma 6.1.2].

For bk (n), the number of partitions of n into parts none of which is a multiple of
k, the generating function is given by the infinite product
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There are other important examples ofpartition generating functions which contain
similar infinite products. In particular we shall consider certain partition generating
functions which contain infinite products of the form
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where 0 < g < 8. For example the two Rogers-Ramanujan identities (see 1 ]),
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where a 0 or 1, involve such products.
For rg,8 (n) the number ofpartitions ofn into parts that are congruent to +g (mod 8)

/8+1where 0 < g < 2 ], the generating function for r,,(n) is given by the infinite
product
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