CAUCHY TRANSFORMS AND COMPOSITION OPERATORS

JOSEPH A. CIMA AND ALEC MATHESON

1. A holomorphic function f on the unit disk \mathbb{D} is a Cauchy transform if it admits a representation

$$f(z) = \int_{\mathbb{T}} \frac{d\mu(\zeta)}{1 - \bar{\zeta}z},\tag{1.1}$$

where μ is a finite Borel measure on the unit circle \mathbb{T} . The space K of all Cauchy transforms becomes a Banach space under the norm $||f||_K = \inf ||\mu||_M$, where the infimum is taken over all Borel measures μ satisfying (1.1). The Banach space K is clearly the quotient of the Banach space M of Borel measures by the subspace of measures with vanishing Cauchy transforms. It is an immediate consequence of the F. and M. Riesz theorem that a Borel measure μ has a vanishing Cauchy transform if and only if μ has the form $d\mu = f dm$, where $f \in \overline{H}_0^1$ and m is normalized Lebesgue measure on \mathbb{T} . Here \overline{H}_0^1 is the subspace of L^1 consisting of functions with mean value 0 whose conjugates belong to the Hardy space H^1 . Hence K is isometrically isomorphic to M/\overline{H}_0^1 . On the other hand, M admits a decomposition $M = L^1 \oplus M_s$, where M_s is the space of Borel measures which are singular with respect to Lebesgue measure, and $\overline{H}_0^1 \subset L^1$. Consequently K is isometrically isomorphic to $L^1/\overline{H}_0^1 \oplus M_s$. In particular K admits an analogous decomposition $K = K_a \oplus K_s$, where K_a is isometrically isomorphic to L^1/\overline{H}_0^1 and K_s to M_s .

Now let ϕ be a holomorphic map of the unit disk \mathbb{D} into itself. The composition operator $C_{\phi}f = f \circ \phi$ acts on a variety of spaces of holomorphic functions, most notably the Hardy spaces H^p . It was established by Bourdon and Cima [2] that C_{ϕ} also acts on K, that is, $f \circ \phi \in K$ for all $f \in K$. It is an immediate consequence of the closed graph theorem that C_{ϕ} is a bounded operator on K. In fact Bourdon and Cima provide the estimate

$$\|C_{\phi}\|_{K} \le \frac{2 + 2\sqrt{2}}{1 - |\phi(0)|} \tag{1.2}$$

for the norm of C_{ϕ} on K. A new proof of the boundedness of C_{ϕ} on K will follow

Received October 21, 1996.

¹⁹⁹¹ Mathematics Subject Classification. Primary 42B30; Secondary 30D55.

The second author was supported in part by a grant from the National Science Foundation.

^{© 1998} by the Board of Trustees of the University of Illinois Manufactured in the United States of America