MARKOV PROCESSES ON AN ENTRANCE BOUNDARY¹

BY

FRANK KNIGHT

This paper presents, essentially, an alternative approach to the second part of [7] in terms of "boundary theory." In [7, Section 2] the motivating idea was to regularize a temporally homogeneous Markov process X(t), having as state space a set X, by using martingale theorems, independently of a topology on X or on the state space Y of the resulting process Y(t). \mathbf{It} is shown here that there is an alternative state space Y_{ρ} for Y(t), and a compact metric topology on Y_{ρ} , such that Y(t) (after a slight adjustment of the definition in [7] on certain sets of probability 0) has right continuous path functions. The necessary metric ρ is defined in a manner closely resembling that used by R. S. Martin [8] in defining a general boundary for the positive harmonic functions on Euclidean domains. In this way it is an extension of the boundaries discussed especially by Doob [2], Hunt [6], and Watanabe [10]. In terms of the metric ρ , the space Y_{ρ} is the completion of X, and the new process, denoted by $Y_{\rho}(t)$, is defined from X(t) as the value of the process X(t) on the "entrance boundary" corresponding to t, for each t. Equivalently, $Y_{\rho}(t)$ is simply given almost surely for all t by $Y_{\rho}(t) = \lim_{\tau \downarrow t, \tau \text{rational}} X(\tau)$, the limit being taken in the metric ρ .

In the second section we show the connection between this regularization of X(t) and the general methods of Ray [9] for regularization of transition functions and processes corresponding to a given resolvent R_{λ} , $\lambda > 0$, operating on continuous functions. It may be pointed out that, aside from reasons of completeness, this connection is significant because, whenever $Y_{\rho}(t)$ is an instance of Ray's method, the theorems of [9] provide a transition function for $Y_{\rho}(t)$ together with a number of its properties which are not established otherwise.

Section 1

It is assumed in [7, Section 2] that a Markov process X(t) relative to completed σ -fields $\mathfrak{F}(t)$ on a probability space (Ω, F, P) is given, together with a homogeneous transition function p(t, x, E), $x \in X$, $E \in \mathfrak{G}$, for X(t), and such that (a) \mathfrak{G} is generated by countably many sets, (b) wide-sense conditional distributions over \mathfrak{G} exist, (c) p(t, x, E) is measurable in (t, x)over $\mathfrak{G} \times \mathfrak{G}$ where \mathfrak{G} is the field of real Borel sets, and (d) $p(\cdot, x_1, \cdot) =$ $p(\cdot, x_2, \cdot)$ implies that $x_1 = x_2$. These hypotheses are assumed again here. Under these hypotheses there is constructed in [7] a corresponding process Y(t) which has for its range (at each t) families of joint distributions F(t', E; t, w), t' > 0, $E \in \mathfrak{G}$, the "conditional futures", such that for

Received December 14, 1961.

¹ This research was supported in part by an Air Force Contract.