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2. Introduction

Counting 2 as the first prime, we denote by (x), (x), and (x), respec-
tively, the number of primes =< x, the logarithm of the product of all primes
=< x, and the logarithm of the least common multiple of all positive integers
-< x; if x < 2, we take v(x) O(x) (x) 0. We also let pn denote the
nth prime, and (n) denote the number of positive integers __< n and rela-
tively prime to n. Throughout, n shall denote a positive integer, p a prime,
and x a real number. We shall present approximate formulas for (x),
(x), (x), pn, (n), and other functions related to prime numbers.

In 1808, on the basis of attempting to fit known values of r(x) by an em-
pirical formula, Legendre coniectured an approximation very similar to that
given below in (2.19). In 1849, again on the basis of counts of the number
of primes in various intervals, Gauss communicated to Encke a coniecture
that in the neighborhood of the number x the average density of the primes
is 1/log x. On this basis, if one should wish an estimate for the sum of f(p)
over all primes p -< x, the natural approximation would be
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