ON A THEOREM OF SPITZER AND STONE AND RANDOM WALKS WITH ABSORBING BARRIERS

BY Harry Kesten

1. Introduction

Consider a sequence X_1 , X_2 , \cdots of independent, identically distributed random variables, taking integer values only. We assume that every integer is a possible value (compare [5]), i.e., if

$$(1.1) S_n = \sum_{i=1}^n X_i,$$

then there exist integers u and v such that

(1.2)
$$P\{S_u = +1\} > 0 \text{ and } P\{S_v = -1\} > 0.$$

Let I be any finite set of integers, containing $\mu(I)$ points, and put

- (1.3) $N_I(A) = \text{the number of terms } S_k \text{ in the infinite sequence } S_1, S_2, \dots, \text{ such that } S_k \in I \text{ and } S_i \leq A \text{ for } i = 1, 2, \dots, k,$
- (1.4) $N_I(A, -B) = \text{the number of terms } S_k \text{ in the infinite sequence } S_1, S_2, \cdots \text{ such that } S_k \in I \text{ and } -B \leq S_i \leq A \text{ for } i = 1, 2, \cdots, k.$

In a recent research note (Theorem 6 of [11]) of Spitzer and a paper [13] of Spitzer and Stone the asymptotic distributions of $N_I(A)$ and $N_I(A, -A)$ were given for the case $\mu(I) = 1, X_i$ symmetrically distributed and $EX_i^2 < \infty$. At the same time Spitzer suggested in [11] that some formulae would be valid for any finite $\mu(I)$ and even for nonsymmetrically distributed X_i with zero mean. We shall drop the condition $EX_i^2 < \infty$ but instead assume that the characteristic function $\phi(t) = Ee^{itX_1}$ is such that

$$\lim_{t \downarrow 0} (1 - \phi(t))/t^{\alpha} = Q \qquad \text{with } \operatorname{Re} Q > 0$$

for some α with $1 \le \alpha \le 2$. (In some places $0 < \alpha < 1$ is also considered.)

The generalizations suggested by Spitzer for $N_I(A)$ will be derived, and the corresponding results for $1 \le \alpha < 2$ are also found. If there are two barriers, we consider mostly variables with symmetric distributions, i.e., for which $P\{X_i = k\} = P\{X_i = -k\}$. We do not require, however, that the barriers be symmetrically placed, i.e., we shall find the asymptotic distribution of $N_I(A, -B)$ where B not necessarily equals A.

Received March 2, 1960.

¹ As usual, $P\{A\}$ = probability of the event A;

 $P\{A \mid B\}$ = conditional probability of A, given B;

 $E\{X\}$ = expectation of the random variable X; and

 $E\{X \mid B\} = \text{conditional expectation of } X, \text{ given } B.$