GENERALIZATIONS OF A THEOREM OF N. BLACKBURN ON p-GROUPS

BY
Charles R. Hobby

Let G be a finite p-group, and let $G=G_{1} \supset G_{2} \supset \cdots$ be the descending central series of G. N. Blackburn [1] has shown that if G_{2} can be generated by two elements, then G_{2} is a metacyclic group of class at most two. We generalize this theorem in two ways. We first show (Theorem 1) that Blackburn's theorem holds if " G_{2} " is replaced by $\Psi(G)$ where $\Psi(G)$ is any one of a large class of characteristic subgroups of G. Secondly, we show (Theorem 2) that if G_{n} can be generated by n elements then the Frattini subgroup of G_{n} coincides with the subgroup generated by the $p^{\text {th }}$ powers of elements of G_{n}. If p is odd, this result for $n=2$ is equivalent to Blackburn's theorem. An application of Theorem 2 to the problem of bounding the length of the derived series of a p-group is given in Remark 2.

All groups considered are finite p-groups. We use the following notation: $P(G)$ is the subgroup generated by the $p^{\text {th }}$ powers of elements of $G ; \Phi(G)$ is the Frattini subgroup of G; $G^{(k)}$ is the $k^{\text {th }}$ derived group of G; $G=G_{1} \supseteq G_{2} \supseteq \cdots$ is the descending central series of $G ; 1 \subseteq Z_{1} \subseteq Z_{2} \subseteq \cdots$ is the ascending central series of $G ;|G|$ is the order of $G ;(h, k)=h^{-1} k^{-1} h k$; (H, K) is the subgroup generated by the set of all (h, k) for $h \in H$ and $k \in K$. The group G is said to be metacyclic if G contains a cyclic normal subgroup N such that G / N is cyclic.

We denote by Ψ a rule which assigns a unique subgroup $\Psi(G)$ to every p-group G. We consider only those rules for which
(1) $\Psi(G)$ is a characteristic subgroup of G,
(2) $\Psi(G) \subseteq \Phi(G)$, and
(3) $\Psi(G / N)=\Psi(G) / N$ whenever $N \subseteq \Psi(G)$ and N is normal in G. For example, one could let $\Psi(G)=G_{n}$ for any $n \geqq 2$.

We shall need two lemmas.
Lemma 1. If $|N| \leqq p^{n}$ and N is normal in G, then $N \subseteq Z_{n}$.
Proof. This result is well known for $n=1$, and the general case follows by an easy induction.

The next lemma follows from the fact that the automorphism group of a cyclic group is abelian.

Lemma 2. Every cyclic normal subgroup of G is centralized by $G^{(1)}$.
Theorem 1. If $\Psi(G)$ can be generated by two elements, then $\Psi(G)$ is meta-

Received May 11, 1960.

