SOME NONSTABLE HOMOTOPY GROUPS OF LIE GROUPS

BY MICHEL A. KERVAIRE

The main result of [6], stating that S^{4n-1} is not parallelizable except for n=1 and 2, can be reformulated in terms of homotopy groups of the rotation group SO(4n-1) as follows: For $n \ge 3$, $\pi_{4n-2}(SO(4n-1))$ is not zero; or equivalently, for $n \ge 3$, $\pi_{4n-2}(SO(4n-2))$ is not zero. (Compare [6], Lemma 2.)

In the present paper, the results of R. Bott [2] on the stable homotopy of the classical groups and the isomorphism $\pi_{2q}(U(q)) \cong \mathbb{Z}/q! \mathbb{Z}$ are used to derive more precise information on $\pi_{4n-2}(SO(4n-1))$, $\pi_{4n-2}(SO(4n-2))$, and further nonstable homotopy groups of the rotation group SO(m) and the unitary group U(m). Our results also rely essentially on the computations of G. F. Paechter [8].

As seen from the tables below, periodicity persists "for some time" in the nonstable range in the sense that $\pi_{r+m}(SO(m))$ for $r \leq 1$ and large m depends only on the remainder class of r+m modulo 8. (Periodicity breaks down for low values of m, due to the fact that S^1 , S^3 , S^7 are parallelizable.) Similarly, for m large enough and $r \leq 2$, $\pi_{2m+r}(U(m))$ depends only on the parity of r.

 $\pi_{2m+r}(U(m))$ is given for $r \leq 2$ by the following table:

$$z = -1$$
 $z = -1$ z

 $\pi_{m+r}(SO(m))$ is given by the following table, valid for $s \ge 1$:

In this table d is ambiguously 1 or 2.

Received November 10, 1958.