ON THE NORM OF A GROUP

BY EUGENE SCHENKMAN¹

The object of this note is to simplify and improve on the results of Wos (cf. [3]) about the norm of a group. We prove the following theorem.

THEOREM. The norm of a group is in the second center of the group; the centralizer of the norm includes the commutator subgroup of the group.

Proof. It should be recalled that the norm N(G) of a group G (cf. [1]) is the set of elements a such that for each subgroup H of G, aH = Ha. Thus the norm comprises precisely those elements a such that aga^{-1} is, for every g in G, a power of g. It follows that if [a, g] designates the commutator $aga^{-1}g^{-1}$, then [[a, g], g] = 1 for all g in G. In particular, [[a, ga], ga] = 1. But

$$[[a, ga], ga] = [[a, g], ga] = [[a, g], g]g[[a, g], a]g^{-1}$$

(cf. [4], p. 80), and hence [[a, g], a] = 1, which implies that a commutes with its conjugates. Thus

(A) Every element of the norm is in an Abelian normal subgroup of G; and $[a, g^m] = [a, g]^m$ for every integer m.

On the basis of the above, we next show that

(1)
$$[[h, a], g^{-1}] = [[g, a], h].$$

For $[a, g] = g^r$, a power of g; $[a, h] = h^s$, a power of h; and $[a, hg] = (hg)^t$, a power of hg. Furthermore $aga^{-1} = g^{r+1}$, $aha^{-1} = h^{s+1}$, $ahga^{-1} = (hg)^{t+1}$, whence it follows that $h^{s+1}g^{r+1} = (hg)^{t+1}$. But h^s and g^r commute because they are in the Abelian normal subgroup spanned by a and its conjugates. It follows that $hg^rh^sg = (hg)^{t+1}$ and

$$g^{r-1}h^sg = (hg)^t = [a, hg] = [a, h]h[a, g]h^{-1} = h^shg^rh^{-1}.$$

Then $h^{-s}g^{-1}h^{s}g = g^{-r}hg^{r}h^{-1}$, and since $[a, h]^{-1} = [h, a]$,

(1)
$$[[h, a], g^{-1}] = [[g, a], h],$$

as was to be shown.

Now [[g, a], h] is a power of h since a, and consequently [g, a], belongs to the norm; and the above equation (1) shows that [[g, a], h] is a power of g as well. Hence

(B) [g, a], h is in the center of the group K generated by g and h.

Received October 23, 1958.

¹ The author is indebted to the National Science Foundation for support.