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1. Introduction

Given an integer s ->_ 3, write el, e., es for the s coordinate vectors
(1, 0, 0), (0, 1, 0), (0, 0, 1), spanning the s-dimensional
lattice of points with integral coordinates, and let s denote the position at
time n (= 0, 1, 2, .-.) of a particle performing the standard s-dimensional
random walk according to the following rule" fixing the first n 1 steps
sl, s2, s_l, the particle starts afresh at s_, jumping next to one of the
2s neighbors s s_l 4- e, sn_ 4- e2, s_l 4- es of Sn_l, the chance of
landing at a particular neighbor being (2s) -1.
Given a set B of lattice points, the probability p, that the random walk

hits B at some time n < -t- , as a function of the starting point of the walk,
is excessive in the sense that GpB _--< 0, where G is Laplace’s difference operator:

(Gp)(a) (2s)-l__<.=.p(a + (-)’e) p(a).

B. H. Murdoch [1, pp. 13-19] proved that if p >- 0, and if Gp 0, then p
is constant, and, with the help of this result, it follows, as Murdoch himself
noted, that pB is the sum of the potential Ke. and the constant p,( ), where
e. -Gp. (>= 0), Ke, is the expectation of -’>__0 eB(s,), as a function of
the starting point of the walk, and p,( is the (constant) probability
P. (B) of the event B that s e B for an infinite number of integers n.

P. (B) is either 0 or 1. When P. (B) 0, p, is the greatest potential
p =< 1 such that Gp 0 outside B, and, on the strength of the example of
the Newtonian potential in 3 dimensions, it is natural to think of e. as the
electrostatic distribution of charge on the conductor B and to introduce the
total charge (of e,) as the capacity C(B) of B.
Given a set B, it is an interesting problem to decide whether P.(B) 0 or

1; the solution is

2-’(-)C(B1.2 P. (B) 0 or 1 according aS En >__0 n) < or - o0

where B is the intersection of B and the spherical shell 2 <- a[ < 2"+.
Wiener’s test for the singular points of the Newtonian electrostatic potential
(see Courant and Hilbert [1, p. 286]) served us as a model, and for this reason
we call 1.2 Wiener’s test also. B.H. Murdoch [1, pp. 45-47] came close to
proving 1.2 and used his method to compute P. (B) for sets B similar to those
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J. Capoulade [1] also stated this result and S. Verblunsky [1] and R. Duffin [1, pp.

242-245] proved it. Murdoch’s results lie much deeper.
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