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1. Introduction

Given an integer s = 3, write ¢, ey, ++ -, e, for the s coordinate vectors
(1,0,---,0),(0,1,---,0),---, (0,0, ---, 1), spanning the s-dimensional
lattice of points with integral coordinates, and let s, denote the position at
time n (= 0, 1, 2, --+) of a particle performing the standard s-dimensional
random walk according to the following rule: fixing the first n — 1 steps
S1, 8, ", 8,1, the particle starts afresh at s,_; , jumping next to one of the
2s neighbors s, = 8,1 = €1, Sn1 &= €, **+ , Sy1 == € Of 8,y , the chance of
landing at a particular neighbor being (2s) ™.

Given a set B of lattice points, the probability pz that the random walk
hits B at some time n < -+, as a function of the starting point of the walk,
is excessive in the sense that Gpz =< 0, where G is Laplace’s difference operator:

1.1 (Gp)(a) = (28)" Lligsmmr2 P(a + (=)"a) — pla).

B. H. Murdoch [1, pp. 13-19] proved that if p = 0, and if Gp = 0, then p
is constant,” and, with the help of this result, it follows, as Murdoch himself
noted, that pp is the sum of the potential Kep and the constant pz( « ), where
es = —Gpz (= 0), Kep is the expectation of ano es(s,), as a function of
the starting point of the walk, and pz(») is the (constant) probability
P.(B) of the event B that s, € B for an infinite number of integers n.

P.(B) is either 0 or 1. When P.(B) = 0, ps is the greatest potential
p = 1 such that Gp = 0 outside B, and, on the strength of the example of
the Newtonian potential in 3 dimensions, it is natural to think of ez as the
electrostatic distribution of charge on the conductor B and to introduce the
total charge (of ez) as the capacity C(B) of B.

Given a set B, it is an interesting problem to decide whether P.(B) = 0 or
1; the solution is

12 P.(B) =0orl according as D .02 "“?C(B,) < or = + =,

where B, is the intersection of B and the spherical shell 2" < |a| < 2"
Wiener’s test for the singular points of the Newtonian electrostatic potential
(see Courant and Hilbert [1, p. 286]) served us as a model, and for this reason
we call 1.2 Wiener’s test also. B. H. Murdoch [1, pp. 45-47] came close to
proving 1.2 and used his method to compute P.(B) for sets B similar to those
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2 J. Capoulade [1] also stated this result and S. Verblunsky [1] and R. Duffin [1, pp.
242-245] proved it. Murdoch’s results lie much deeper.
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