POTENTIALS AND THE RANDOM WALK

BY

KIYOSI ITÔ AND H. P. MCKEAN, JR.¹

1. Introduction

Given an integer $s \geq 3$, write e_1, e_2, \cdots, e_s for the s coordinate vectors $(1, 0, \cdots, 0), (0, 1, \cdots, 0), \cdots, (0, 0, \cdots, 1),$ spanning the s-dimensional lattice of points with integral coordinates, and let s_n denote the position at time $n (= 0, 1, 2, \cdots)$ of a particle performing the standard s-dimensional random walk according to the following rule: fixing the first $n - 1$ steps $s_1, s_2, \cdots, s_{n-1}$, the particle starts afresh at s_{n-1} , jumping next to one of the 2s neighbors $s_n = s_{n-1} \pm e_1$, $s_{n-1} \pm e_2$, \cdots , $s_{n-1} \pm e_s$ of s_{n-1} , the chance of landing at a particular neighbor being $(2s)^{-1}$.

Given a set B of lattice points, the probability p_B that the random walk hits B at some time $n < +\infty$, as a function of the starting point of the walk, is excessive in the sense that $Gp_B \leq 0$, where G is Laplace's difference operator:

1.1
$$
(\mathbf{G}p)(a) = (2s)^{-1} \sum_{k \leq s, n=1,2} p(a + (-)^{n} e_{k}) - p(a).
$$

B. H. Murdoch [1, pp. 13–19] proved that if $p \geq 0$, and if $\mathbf{G}p = 0$, then p is constant, 2 and, with the help of this result, it follows, as Murdoch himself noted, that p_B is the sum of the *potential* $\mathbf{K}e_B$ and the constant $p_B(\infty)$, where $e_B = -Gp_B \ (\geq 0)$, $\mathbf{K}e_B$ is the expectation of $\sum_{n\geq 0} e_B(s_n)$, as a function of the starting point of the walk, and $p_B(\infty)$ is the (constant) probability $P.(\mathbf{B})$ of the event **B** that $s_n \in B$ for an infinite number of integers n.

 $P.(\mathbf{B})$ is either 0 or 1. When $P.(\mathbf{B}) = 0$, p_B is the greatest potential $p \leq 1$ such that $G_p = 0$ outside B, and, on the strength of the example of the Newtonian potential in 3 dimensions, it is natural to think of e_B as the electrostatic distribution of charge on the conductor B and to introduce the total charge (of e_B) as the capacity $C(B)$ of B.

Given a set B, it is an interesting problem to decide whether $P(\mathbf{B}) = 0$ or 1; the solution is

1.2
$$
P.(\mathbf{B}) = 0
$$
 or 1 according as $\sum_{n \geq 0} 2^{-n(s-2)}C(B_n) < \text{or } = +\infty$,

 $+ \infty$
 < 2
poter where B_n is the intersection of B and the spherical shell $2^n \leq |a| < 2^{n+1}$. Wiener's test for the singular points of the Newtonian electrostatic potential (see Courant and Hilbert [1, p. 286]) served us as a model, and for this reason we call 1.2 Wiener's test also. B.H. Murdoch [1, pp. 45-47] came close to proving 1.2 and used his method to compute P . (B) for sets B similar to those

Received September 25, 1958.

Fulbright grantee 1957-1958.

J. Capoulade [1] also stated this result and S. Verblunsky [1] and R. Duffin [1, pp. 242-245] proved it. Murdoch's results lie much deeper.