INVERSION OF TOEPLITZ MATRICES

BY

Alberto Calderón,¹ Frank Spitzer,² and Harold Widom¹

1. Introduction

This paper deals with the inversion of the Toeplitz matrix $T = (c_{j-k})$, $j, k = 0, 1, \cdots$. It will be assumed that the c_k are the Fourier coefficients of a function $\varphi(\theta)$,

$$c_k = rac{1}{2\pi} \int_{-\pi}^{\pi} e^{-ik\theta} \varphi(heta) \, d heta, \qquad k = 0, \, \pm 1, \, \cdots.$$

Since the inversion of T is equivalent to the solution of a system of equations of the form

$$\sum_{k=0}^{\infty} c_{j-k} x_k = y_j, \qquad j = 0, \pm 1, \cdots,$$

we see that we are dealing with the discrete analogue of a Wiener-Hopf equation. It might be expected then that we shall look for a factorization of φ of the form $\varphi = \varphi_+ \varphi_-$, where $\varphi_+(\theta)$ and $\varphi_-(\theta)$ are boundary values of functions analytic inside and outside the unit circle, respectively. This, in fact, is the crux of the matter.

In Section 2 we consider the case $\sum_{-\infty}^{\infty} |c_k| < \infty$. Then *T* may be considered a bounded operator on the space l_{∞}^+ of bounded sequences $X = \{x_0, x_1, \cdots\}$ with $||X|| = \sup |x_k|$, and a necessary and sufficient condition is found for the invertibility of *T* (Theorem I). In case *T* is invertible, a generating function is found for the entries of the matrix T^{-1} (Theorem III). As a consequence of the theory we obtain a theorem of Tauberian type: Certain sets are shown to be fundamental in l_1^+ , the space of all $X = \{x_0, x_1, \cdots\}$ with $||X|| = \sum_{0}^{\infty} |x_k| < \infty$ (Corollary of Theorem II).

In Section 3 the condition $\sum |c_k| < \infty$ is dropped, but it is still assumed that φ is bounded. In this case T may be considered an operator (bounded by the boundedness of φ using Parseval's relation) on the space l_2^+ of square summable sequences $X = \{x_0, x_1, \cdots\}$ with $||X||^2 = \sum_{k=0}^{\infty} |x_k|^2$, and we find a sufficient condition for the invertibility of T (Theorem IV).

Note added in proof. A substantial part of this paper (Theorems I and II and an analogue of Theorem III) was discovered independently by M. G. KREIN in his paper, Integral equations on the half-line with a difference kernel, Uspehi Mat. Nauk, vol 13, no. 5 (1958), pp. 3-120 (Russian). Where the operator T is concerned, with $\sum |c_k| < \infty$, our paper is practically identical with Krein's, in regard to both methods and results. Krein has gone further

Received May 26, 1958.

¹ This research was supported by the U. S. Air Force.

² Research sponsored by the ONR at Cornell University.