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1. Introduction

Let F be a nonsingular (irreducible) algebraic surface over an algebraically
closed ground field/. A theorem of Castelnuovo asserts that if the arithmetic
genus pa and the bigenus P2 of F are both zero then F is a rational surface.
This theorem has now been proved for fields ]c of arbitrary characteristic p,
except in the case (K2) 1, where K is a canonical divisor on F. In our
cited paper MM (see footnote 2) we have stated that we have also a proof for
the case (K2) 1, and in the present paper we shall give this proof.
An immediate consequence of Castelnuovo’s criterion of rationality is the

well-known theorem of Castelnuovo on the rationality of plane involution.
This theorem, in the case of arbitrary characteristic, is to be stated as follows"

Le It(x, y) be a purely transcendenlal exlension of an algebraically closed
field tc, of ranscendence degree 2, and let be a field between ] and tc(x, y), also of
transcendence degree 2 over tc. If It(x, y) is a separable extension oj

is a pure lranscendental extension of
We shall show by an example that the condition of separability of k(x, y)/2

is essential.

2
We shall make use of results established in MM for the case of surfaces F

for which Pa P 0 and (K2) > 0. If (K) 1, then the Riemann-
Roch inequality shows that the dimension of the anticanonical system
Ka J(= -K J) is => 1. If JKa is reducible, then F is rational, by Propo-

sition 7.3 of MM. We shall therefore assume that K, is irreducible. In that
case we have dim K 1 (MM, Lemma 10.1), i.e., g is a pencil; it has
a single base point 0, every member Ka of K has a simple point at 0, and
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The theorem is also true if 2/] has transcendence degree 1 (without ny assumption
on separability), but in that case the theorem is an easy consequence of the theorem of
of Liiroth.
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