ON SOME ARITHMETICAL FUNCTIONS

BY

HUBERT DELANGE

In a paper on additive arithmetical functions,¹ P. Erdös incidentally states the following result:

(\mathcal{E}_1) Let $\omega(n)$ be the number of prime divisors of the positive integer n, and let λ be any irrational number.

Then the numbers $\lambda \omega(n)$ are uniformly distributed modulo 1.

This means that, for $0 \leq t \leq 1$, the number of *n*'s less than or equal to x and such that²

$$\lambda\omega(n) - I[\lambda\omega(n)] \leq t$$

is tx + o[x] as x tends to $+\infty$.

P. Erdös adds that the proof is not easy.

(\mathcal{E}_1) can actually be deduced from a later result of Erdös, say (\mathcal{E}_2), concerning the number of integers $n \leq x$ for which $\omega(n) = k$.³

Also a very short proof can be based on the following formula due to Atle Selberg:⁴

As x tends to $+\infty$,

$$\sum_{n \leq x} z^{\omega(n)} = F(z) x (\log x)^{z-1} + O[x (\log x)^{\Re z-2}],$$

uniformly for $|z| \leq R$, where R is any positive number and

$$F(z) = \frac{1}{\Gamma(z)} \prod \left[1 + \frac{z}{p-1} \right] \left[1 - \frac{1}{p} \right]^{z}.$$

We have only to take $z = \exp [2\pi q\lambda i]$, where q is any positive integer, and use a well known theorem of H. Weyl.⁵

However the proof of (\mathcal{E}_2) is not very simple, while the proof of Selberg's formula uses the properties of the Riemann Zeta-function in the critical strip.

In the present paper, we shall first give a simple proof of (\mathcal{E}_1) which uses only the nonvanishing of $\zeta(s)$ for $\Re s \ge 1$. We shall also give some generalizations.

Received November 13, 1956; received in revised form April 29, 1957.

¹ On the distribution function of additive functions, Ann. of Math. (2), vol. 47 (1946), pp. 1-20. See p. 2, lines 4 and 5.

² I[u] denotes the greatest integer not exceeding u.

³ On the integers having exactly k prime factors, Ann. of Math. (2), vol. 49 (1948), pp. 53-66.

⁴ Note on a paper by L. G. Sathe, J. Indian Math. Soc., vol. 18 (1954), pp. 83-87.

⁵ Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. vol. 77 (1916), pp. 313-352, Satz 1, p. 315.