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The class of rings of functions that is going to be the obiect of our discussion
my be described s follows" There re given firstly [commutative] field F,
the field of vMues of the ring of functions; secondly set D of elements [clled
points], the domMn of the ring of functions; nd thirdly and mMnly ring R
of single-vlued functions, defined on D with vlues in F. [Addition and
multiplication of functions in R are defined in the ntural fashion:

(f -t- g)(x) f(x) + g(x), (fg)(x) f(x)g(x)

for x in D nd f, g in R.] These rings will always be subiect to the following
requirements"

R contMns M1 the constants;

if x nd y re different points in D, then there exists , function f in R such
that f(x) f(y).

All these rings re commutative nd contain ring unit l, namely the con-
stnt 1. The requirement that ll constants re present in R is not quite as
hrmless ts it ppers. The field of constants which is nturally isomorphic
with the field F of vlues shall be denoted by C. The requirement on the
other hnd that there exists to any pir of diffcrcn points in D function in
R which tkes different values on these points does not constitute loss of
generality, since we would form otherwise the classes of points in D on which
all functions in R take the sme w.due, t.md since we could consider these
classes as the "points".
With such a configuration [F, D, R] we connect two topological spaces.

The space of maximal ideals

We denote by T T(R) the totality of maximal ideals in R. If p is a,

point in T and S is a subset of T, then p is said to belong to the closure S of
S if, ttnd only if,

S*- f’l s<=p.

It is well known thttt /’ with the topology just described is a compact T-space
[so that in particular every point is a closed set and every covering of T with
open sets contains t finite covering of T]; sec Jacobson [1] or Smuel [1; pp.
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