
SOME DUALITY THEOREMS

B J. J.

1. Basic notions

Certain concepts used in the theory of group representations apply equally
to matrix-valued functions defined on a set S. For instance, if f: S M1
and g: S --+ M2 whereM is the total matrix algebra over some field (i 1, 2),
then the Kronecker product f X g is defined iust as for representations.
Similarly, the concept of irreducibility also carries over. f will be called
irreducible if f maps S onto an irreducible set of matrices.

Suppose G is a compact topological group, and R1, R2 representations of
G. According to a basic theorem, the Kronecker product R1 X R. "decom-
poses" into irreducible components. More precisely, there exist irreducible
representations P, P2, "-’, P of G, positive integers m, m2, m,
and a nonsingular matrix A, such that
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where the big matrix above is to be completed with zero matrices. We
shall denote this matrix by A=I m P.

Systems of matrix-valued functions which satisfy algebraic relations of
the type (1) wil be of interest. For this purpose we make the following
definition.
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