
ON INGHAM’S TRIGONOMETRIC INEQUALITY

BY L. ,1. MORDELL

Ingham has recently proved the following

THEOREM. Let

where the h’s are real and h,
Then
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He notes that we may take , 1, T by the substitution -yt t’.
may then rewrite the result as the
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Thenwhere the h’s are real and hr

We

(3) ar - 1 f(t) dt (0 < r < n)

His proof, to which he was led by considerations of Fourier transforms, is.
quite short. Its essential idea, however, as I see it, can be presented in a.
rather simpler way, which also leads to a more precise result. He has shown
that the factor lIT in (1) cannot be replaced by a factor c/T where c is an
absolute constant < 1, but my proof shows that the factor 1/ in (3) can be
replaced by a factor Kr < 1/r depending upon the ’s.
On multiplying (2) throughout by exrti, it suffices to take f(t) in the form

hr.-- Xr--1 >= 1 (--(m-- 1) <= r <= n),

f(t) dt,

(4) f(t) are-x’t, Xo O,

and to estimate a0 I. I prove that

a01 __< _Ko(5)

with

(6) Ko 1 - (r/r),
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