ON INGHAM'S TRIGONOMETRIC INEQUALITY

BY L. J. MORDELL

Ingham has recently¹ proved the following

THEOREM. Let

$$f(t) = \sum_{n=N}^{N'} a_n e^{-\lambda_n t i},$$

where the λ 's are real and $\lambda_n - \lambda_{n-1} \ge \gamma > 0$ ($N < n \le N'$), and let $\gamma T = \pi$. Then

(1)
$$|a_n| \leq \frac{1}{T} \int_{-T}^{T} |f(t)| dt \qquad (N \leq n \leq N').$$

He notes that we may take $\gamma = 1$, $T = \pi$ by the substitution $\gamma t = t'$. We may then rewrite the result as the

THEOREM. Let

(2)
$$f(t) = \sum_{r=0}^{n} a_r e^{-\lambda_r t i},$$

where the λ 's are real and $\lambda_r - \lambda_{r-1} \ge 1$ $(1 \le r \le n)$. Then

(3)
$$|a_r| \leq \frac{1}{\pi} \int_{-\pi}^{\pi} |f(t)| dt$$
 $(0 \leq r \leq n).$

His proof, to which he was led by considerations of Fourier transforms, is quite short. Its essential idea, however, as I see it, can be presented in a rather simpler way, which also leads to a more precise result. He has shown that the factor 1/T in (1) cannot be replaced by a factor c/T where c is an absolute constant <1, but my proof shows that the factor $1/\pi$ in (3) can be replaced by a factor $K_r < 1/\pi$ depending upon the λ 's.

On multiplying (2) throughout by $e^{\lambda_{\tau} t i}$, it suffices to take f(t) in the form

(4)
$$f(t) = \sum_{r=-m}^{n} a_r e^{-\lambda_r i t}, \quad \lambda_0 = 0, \qquad \lambda_r - \lambda_{r-1} \ge 1 \quad (-(m-1) \le r \le n),$$

and to estimate $|a_0|$. I prove that

(5)
$$|a_0| \leq \frac{K_0}{\pi} \int_{-\pi}^{\pi} |f(t)| dt,$$

with

(6)
$$K_0 = 1 - \frac{1}{2} \prod_{r=-m}^{r=n} (\mu_r / \lambda_r)$$

Received November 6, 1956.

¹ A further note on trigonometric inequalities, Proceedings of the Cambridge Philosophical Society, vol. 46 (1950), pp. 535-537.