INEQUALITIES FOR ASYMMETRIC ENTIRE FUNCTIONS¹

BY R. P. Boas, Jr.

Let $p_n(z)$ be a polynomial of degree n such that $|p_n(z)| \le 1$ in the unit disk $|z| \le 1$. The following results are well known.

Theorem A. For |z| = R > 1, $|p_n(z)| \leq R^n$.

Theorem B. For |z| = 1, $|p'_n(z)| \leq n$.

Theorem A is a simple deduction from the maximum principle (see [11], p. 346, or [10], vol. 1, p. 137, problem III 269). Theorem B is an immediate consequence of S. Bernstein's theorem on the derivative of a trigonometric polynomial (for references see [12], or [2], pp. 206, 231).

When $p_n(z)$ has no zeros in |z| < 1, more precise statements can be made:

Theorem C. For |z| = R > 1, $|p_n(z)| \le \frac{1}{2}(1 + R^n)$.

THEOREM D. For |z| = 1, $|p'_n(z)| \le \frac{1}{2}n$.

Theorem D was conjectured by Erdös and proved by Lax [8]; for another proof see [4]. Theorem C was deduced from Theorem D by Ankeny and Rivlin [1].

Since $p_n(e^{iz})$ is an entire function of exponential type, these theorems suggest generalizations to such functions. Let f(z) be an entire function of exponential type τ , with $|f(x)| \leq 1$ for real x.

Theorem A'. For all y, $|f(x+iy)| \le e^{\tau|y|}$.

Theorem B'. For all real x, $|f'(x)| \leq \tau$.

Theorem A' is a simple consequence of the Phragmén-Lindelöf principle (for references see [2], p. 82; see also [11], pp. 346–347). Theorem B' is Bernstein's generalization of Theorem B (see references on Theorem B).

In this note I obtain theorems for entire functions which generalize Theorems C and D. To see what to expect, note that $p_n(e^{iz})$ is an entire function f(z) of exponential type of a special kind: if $h(\theta)$ is its indicator, we have $h(-\pi/2) = n$, but $h(\pi/2) > -n$ unless $p_n(z) = cz^n$. If $p_n(z)$ has no zeros in |z| < 1, f(z) has no zeros in y > 0, and moreover (since $p_n(0) \neq 0$) $h(\pi/2) = 0$. Let us consider, then, entire functions f(z) of exponential type τ with $|f(z)| \leq 1$ for real x, $h(\pi/2) = 0$ (hence necessarily $h(-\pi/2) = \tau$), and $f(z) \neq 0$ for y > 0.

Theorem 1. For y < 0, $|f(x + iy)| \le \frac{1}{2}(e^{\tau |y|} + 1)$.

Theorem 2. For all real x, $|f'(x)| \leq \frac{1}{2}\tau$.

Received May 8, 1956.

¹ Research supported by the National Science Foundation.