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THE REDUCED BAUTIN INDEX OF PLANAR
VECTOR FIELDS

H. HAUSER, J.-J. RISLERAND B. TEISSIER

0. Introduction. The motivation for this paper comes from the so-called local ver-
sion of the sixteenth Hilbert problem. Consider a polynomial vector field of degree

Wap =x0, —yox+ Z a,-jx"yj Ox —I—b,-jx"yj dy,

2<i+j=q
thea;; andb;; being real or complex. This vector field is a deformation of the vector
field xa, — yd, whose trajectories are concentric circles around 0. We prove in this
paper a precise version of the following assertion: for any comigaotthe space of
the @;;, b;;), there exist a number(g) and a neighborhood (¢, K) of 0 such that
for (a,b) € K, either O is again a center &, ; (i.e., 0 is an elliptic nondegenerate
singular point of W, and W is integrable near 0) oW, ; has at mosip(q) limit
cycles inU(q, K). The local sixteenth Hilbert problem consists of finding explicit
expressions fot/ (¢, K) and p(g). This problem is solved only faf = 2 by the so-
called Bautin theorem (see [B], [Ya]). Bautin considered the Poincaré first return map
around the origin restricted to a line with coordinaieas a serieg,(X) in X with
coefficients depending on the parametees (a;;, b;;). The limit cycles correspond
to the zeroes of;(X) — X. Given a series

o0
S.:(X) =) ()X

k=0
in one variableX with polynomial coefficientsi;(z) € K[z1,...,z4], K = R or
C, Bautin then considered in [B] the idealof K[z] generated by all(z). Since
the polynomial ring is noetherian, there is a smallest integsuch thatao, ..., a4
generatel. This number is the Bautin index of the seri€gX). In special cases,
Bautin was able to bound the number of zeroes.¢%X) and, hence, the number of
limit cycles, in a function ol and then to bound itself wheng = 2. More generally,
when the series is aAg-series in the sense of Briskin-Yomdin (see Section 2 and
[BY]), for eachz, one can bound by the number of zeroes ik of the seriesS, (X)
that lie inside a disk of radiug1(1+|z|) ~#2 centered at 0, where;, 12 are positive
constants depending d(X) (see [FY]).

In this paper, following [BY], we retain the fact that the Poincaré first return map

(we call it simply the Poincaré return map in this paper) is4nseries, and we
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