DISKS WITH BOUNDARIES IN TOTALLY REAL AND LAGRANGIAN MANIFOLDS

H. ALEXANDER

1. Introduction. An *analytic disk* in \mathbb{C}^n is a map $f: D \to \mathbb{C}^n$, where D is the closed unit disk, which is holomorphic on the open disk D^{o} and smooth up to the boundary. One can also consider disks that are not smooth at every point of bD. An H^{∞} -disk is a bounded holomorphic map $f: D^{\circ} \to \mathbb{C}^{n}$. One says that the boundary of f is contained in a compact set $X \subseteq \mathbb{C}^n$ if the almost-everywhere defined boundary values $f^*(e^{i\theta})$ are contained in X for almost all θ . The maximum principle shows that $f(D^{o})$ is contained in the polynomially convex hull of X. There is also an intermediate notion of a *nearly smooth analytic disk* (n.s.a.d.); this is an H^{∞} -disk $f: D^o \to \mathbb{C}^n$ that extends to be smooth on all of D except for (at most) a single point of bD (usually taken to be $1 \in bD$). One says that the boundary of f lies in X if the image by f of bD with the single point deleted is contained in X. The main result of [A] is that if L is an n-dimensional compact totally real manifold in \mathbb{C}^n , then there exists a nonconstant n.s.a.d. with boundary in L. This was proved by adapting an argument of Gromov [G] that was a cornerstone in his theory of pseudoholomorphic curves. Gromov's theorem, for the special case of \mathbb{C}^n , is that if L is an *n*-dimensional compact Lagrangian manifold in \mathbb{C}^n , then there exists a nonconstant analytic disk with boundary in L.

The object here is to obtain more information about these disks. Our motivation comes from the simple example of the standard torus \mathbb{T}^3 in \mathbb{C}^3 , where there are analytic disks in each of the three "faces" $\{(z_1, z_2, z_3) \in \mathbb{C}^3 : |z_1| = 1, |z_2| = 1\}$, $\{(z_1, z_2, z_3) \in \mathbb{C}^3 : |z_1| = 1, |z_3| = 1\}$, and $\{(z_1, z_2, z_3) \in \mathbb{C}^3 : |z_2| = 1, |z_3| = 1\}$. Our result is that, analogously, contained in each of the faces (appropriately defined) associated with an *n*-dimensional totally real *L* in \mathbb{C}^n , there is a nonconstant n.s.a.d. with boundary in *L*. Likewise, in the Lagrangian case considered by Gromov, there exists a nonconstant analytic disk in each face. As with \mathbb{T}^3 , the faces associated with *L* are related to the images of *L* under complex linear maps.

Let ϕ be a complex linear function on \mathbb{C}^n . For L compact in \mathbb{C}^n , we define a compact subset L_{ϕ} of \mathbb{C} as follows: If $\mathbb{C} \setminus \phi(L)$ has only a finite number of components, then we take $L_{\phi} = \phi(L)$. In general, let \mathfrak{U}_{ϕ} be the union of a finite family of components of $\mathbb{C} \setminus \phi(L)$, including the unbounded component and set $L_{\phi} = \mathbb{C} \setminus \mathfrak{U}_{\phi}$. Thus, L_{ϕ}

Received 23 September 1998.

¹⁹⁹¹ *Mathematics Subject Classification*. Primary 32E20, 32D10, 32F25; Secondary 53C15. Supported in part by National Science Foundation grant number DMS 9703877.