QUANTUM COHOMOLOGY OF THE MODULI SPACE OF STABLE BUNDLES OVER A RIEMANN SURFACE

VICENTE MUÑOZ

1. Introduction. Let Σ be a compact Riemann surface of genus $g \geq 2$, which can be also considered as a smooth complex curve of genus g, and fix a line bundle Λ on Σ of degree 1. The central object of our study is the moduli space M_{Σ} of rank-2 stable vector bundles on Σ with determinant Λ , which is a smooth complex variety of complex dimension 3g-3, and hence it is a smooth symplectic manifold of dimension 6g-6. The symplectic deformation class of M_{Σ} only depends on g and not on the particular complex structure on Σ . This is seen by identifying M_{Σ} with the space of flat SO(3)-connections with nontrivial second Stiefel-Whitney class w_2 modulo the gauge transformations that can be lifted to SU(2) (see [12] and [10]).

The manifold $X = M_{\Sigma}$ is a positive symplectic manifold with $\pi_2(X) = \mathbb{Z}$. For such a manifold X, its quantum cohomology $QH^*(X)$ is well defined (see [15], [16], [9], and [13]). As vector spaces, $QH^*(X) = H^*(X)$ (rational coefficients are understood), but the multiplicative structure is different. Let A denote the positive generator of $\pi_2(X)$, that is, the generator such that the symplectic form evaluated on A is positive. Let $N = c_1(X)[A] \in \mathbb{Z}_{>0}$. Then there is a natural $\mathbb{Z}/2N\mathbb{Z}$ -grading for $QH^*(X)$, which comes from reducing the \mathbb{Z} -grading of $H^*(X)$. (For the case $X = M_{\Sigma}$, N = 2, so $QH^*(M_{\Sigma})$ is $\mathbb{Z}/4\mathbb{Z}$ -graded.) The ring structure of $QH^*(X)$, called quantum multiplication, is a deformation of the usual cup product for $H^*(X)$. For $\alpha \in H^p(X)$, $\beta \in H^q(X)$, we define the quantum product of α and β as

$$\alpha \cdot \beta = \sum_{d \ge 0} \Phi_{dA}(\alpha, \beta),$$

where $\Phi_{dA}(\alpha,\beta) \in H^{p+q-2Nd}(X)$ is given by $\langle \Phi_{dA}(\alpha,\beta),\gamma \rangle = \Psi^X_{dA}(\alpha,\beta,\gamma)$, the Gromov-Witten invariant, for all $\gamma \in H^{\dim X-p-q+2Nd}(X)$. One has $\Phi_0(\alpha,\beta) = \alpha \cup \beta$. The other terms are the quantum correction terms, and they all live in lower degree parts of the cohomology groups. It is a fact [16] that the quantum product gives an associative and graded commutative ring structure.

To define the Gromov-Witten invariant, let J be a generic, almost complex structure, compatible with the symplectic form. Then for every 2-homology class dA, $d \in \mathbb{Z}$, there is a moduli space \mathcal{M}_{dA} of pseudoholomorphic rational curves (with respect to J) $f: \mathbb{P}^1 \to X$ with $f_*[\mathbb{P}^1] = dA$. Note that $\mathcal{M}_0 = X$ and that \mathcal{M}_{dA} is empty

Received 25 January 1998. Revision received 8 June 1998. 1991 *Mathematics Subject Classification*. Primary 57R57; Secondary 14D20, 58D27, 53C23. Author supported by a grant from Ministerio de Educación y Cultura of Spain.