THE FROBENIUS AND MONODROMY OPERATORS FOR CURVES AND ABELIAN VARIETIES

ROBERT COLEMAN AND ADRIAN IOVITA

CONTENTS

In	troduction	1
Pa	art I. Definitions of the operators	3
1.	Definitions of <i>N</i> and <i>F</i> for curves	3
	1.1. The monodromy operator	3
	1.2. The Frobenius operator	4
2.	N and F for Abelian varieties	6
	2.1. The monodromy operator for Abelian varieties	7
	2.2. The Frobenius operator for Abelian varieties	8
3.	Equality of the monodromy operators	10
4.	Equality of the Frobenius operators	14
Pa	Part II	
1.	Review of Fontaine's rings and Colmez's integration	17
2.	The universal covering space	20
3.	Integration of differential forms of the second kind along paths	24
4.	Explicit description of Fontaine's monodromy	27
5.	Explicit description of Fontaine's Frobenius	32
	The <i>p</i> -adic integration map commutes with the monodromies	33
7.	The integration map commutes with the Frobenii	35

Introduction. In this paper, we give explicit descriptions of Hyodo and Kato's [HK] Frobenius and monodromy operators on the first *p*-adic de Rham cohomology groups of curves and Abelian varieties with semistable reduction over local fields of mixed characteristic. This paper was motivated by the first author's paper [Co5], where conjectural definitions of these operators for curves with semistable reduction were given. In "La structure de Hyodo-Kato pour les courbes" [LS], Le Stum also proposed formulas for these operators. We also prove that Le Stum's operators are the same as those of Hyodo and Kato.

This paper is divided into two parts. In Part I, written by the first author, we give the definitions of the Frobenius and monodromy operators on the de Rham cohomology of Abelian varieties and of curves with semistable reduction over a local field *K*.

Received 28 January 1997. Revision received 11 November 1997. 1991 *Mathematics Subject Classification*. Primary 14K20; Secondary 14K40.