CHARACTERISTIC CYCLES FOR THE LOOP GRASSMANNIAN AND NILPOTENT ORBITS

SAM EVENS and IVAN MIRKOVIĆ

0. Introduction. Let \mathscr{F} be a perverse sheaf on a complex manifold X, constructible with respect to a Whitney stratification \mathscr{S}. A basic problem in microlocal geometry is to compute the characteristic cycle

$$
C C(\mathscr{F})=\sum_{\alpha \in \mathscr{Y}} c_{\alpha}(\mathscr{F}) \cdot \overline{T_{\alpha}^{*}(X)},
$$

which is a linear combination of closures of conormal bundles to submanifolds of X. Intuitively, the microlocal multiplicities $c_{\alpha}(\mathscr{F})$ measure the singularity of \mathscr{F} at α. In settings related to representation theory, a group G acts on X, \mathscr{F} is G-equivariant, and the microlocal multiplicities play a significant but only partially understood role in representation theory (see [Ro], [SV], [ABV], and [KaSa], e.g.).

In this paper, we compute microlocal multiplicities for certain cases of interest in representation theory. Let G be a connected reductive group with loop group $L G$, and let P be the subgroup of $L G$ consisting of loops with positive Fourier coefficients. Then P-orbits \mathscr{G}_{λ} on the loop Grassmannian $L G / P=\mathscr{G}$ correspond to the irreducible representations $L(\lambda)$ of the dual reductive group \check{G}. For dominant weights μ and λ of a torus of \check{G}, let $m_{\mu}(L(\lambda))$ denote the multiplicity of μ in $L(\lambda)$. Let us embed the orbit closure $\overline{\mathscr{G}_{\lambda}}$ into a finite-dimensional manifold Z.

Theorem 0.1. (a) Let $i: \mathscr{G}_{\lambda} \rightarrow Z$ be the inclusion, and let $i_{!}\left(\mathbb{C}_{\lambda}\right)$ be the extension by zero of the constant sheaf on \mathbb{O}_{λ}. Then $C C\left(i_{!}\left(\mathbb{C}_{\lambda}\right)\left[\operatorname{dim} \mathscr{G}_{\lambda}\right]\right)=\overline{T_{\mathscr{G}_{\lambda}}^{*} Z}$.
(b) The characteristic cycle of the intersection cohomology sheaf of $\overline{\varphi_{\lambda}}$ is given by the character of $L(\lambda)$,

$$
C C\left(I C_{\lambda}\right)=\sum_{\mathscr{G}_{\mu} \subseteq \overline{\mathscr{G}_{\lambda}}} m_{\mu}(L(\lambda)) \cdot \overline{T_{\mathscr{G}_{\mu}}^{*} Z} .
$$

We also consider the nilpotent cone in a semisimple Lie algebra.
Theorem 0.2. Let $\mathfrak{g}=\mathfrak{s l}(n)$, and let α and β be distinct nilpotent orbits and $i: \alpha \hookrightarrow \mathfrak{g}$. Then the following are true.

Received 12 February 1997.
1991 Mathematics Subject Classification. Primary 20G05; Secondary 22E67, 32C38.
Evens partially supported by a National Science Foundation postdoctoral fellowship and by a National Science Foundation grant.

Mirković partially supported by a National Science Foundation grant.

