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KOSTANT POLYNOMIALS AND THE COHOMOLOGY
RING FOR G/B

SARA C. BILLEY

The Schubert calculus for G/B can be completely determined by a certain
matrix related to the Kostant polynomials introduced in [1, Sect. 5]. The poly-
nomials are defined by vanishing properties on the orbit of a regular point under
the action of the Weyl group. For each element w in the Weyl group, the poly-
nomials also have nonzero values on the orbit points corresponding to elements
that are larger than w in the Bruhat order. Our main theorem is an explicit
formula for these values. The matrix of orbit values can be used to determine the
cup product for the cohomology ring for G/B, using only linear algebra or as
described in [14].

1. Introduction. Let G be a semisimple Lie group, H be a Cartan subgroup,
W be its corresponding Weyl group with generators al, a2,..., an, and B be a
Borel subgroup. Let [h*] be the algebra of polynomial functions on the Cartan
subalgebra h over . Fix a regular element O h such that ai(O) is a positive
integer for all simple roots ai. Any Weyl group element v acts on the right on O
by the action on the Cartan subalgebra. We define the following interpolating
polynomials by their values on the orbit of O.

Definition 1. A Kostant polynomial Kw is any element of [h*] of degree l(w)
(nonhomogeneous) such that

1, v=w,
(1.1) Kw(Ov)

0, l(v) < l(w) and v - w.

These polynomials were defined originally by Kostant and appear in [1, Thm.
5.9] for the finite case. They were later generalized by Kostant and Kumar in
[14], there denoted w-X- Kostant showed that Kw is unique modulo the ideal of
all elements of [h*] that vanish on the orbit of O under the Weyl group action.
Furthermore, he showed that the highest homogeneous component of a Kostant
polynomial represents a Schubert class in the cohomology ring of G/B. Indeed,
Carrell has shown there is a direct connection between the ring of polynomials
defined on the orbit OW and the cohomology ring of G/B. Namely, H*(G/B) is
isomorphic to the graded ring canonically associated to the polynomial ring of
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