SEMICLASSICAL EIGENVALUE ESTIMATES FOR THE PAULI OPERATOR WITH STRONG NONHOMOGENEOUS MAGNETIC FIELDS, I: NONASYMPTOTIC LIEB-THIRRING-TYPE ESTIMATE

LÁSZLÓ ERDŐS AND JAN PHILIP SOLOVEJ

Contents

1.	Introduction	127
2.	The geometry of the magnetic field	137
	2.1. Approximating the magnetic field	137
	2.2. Choice of a good gauge	141
3.	The Neumann problem with a constant field on a cylinder	145
	3.1. Supersymmetry	145
	3.2. Estimate of the Neumann ground state density	145
	3.3. Energy contribution from the Neumann ground states	147
4.	Proof of the Lieb-Thirring inequality	149
	4.1. Localization into cubes	149
	4.1.1. Allocating the potential	149
	4.1.2. Splitting into overall spin-up and spin-down within a	
	fixed cube	150
	4.2. Treating the spin-up part in a cube	153
	4.3. Treating the spin-down part in a fixed cube	158
	4.3.1. Localizing into cylinders	159
	4.3.2. Splitting into lower and upper Landau levels	163
	4.3.3. Including the potential	167
	4.3.4. Finishing the lowest Landau level	168
	4.3.5. Finishing the upper Landau levels	170
	4.3.6. Completing the treatment of the spin-down part	172
	4.4. Completing the proof of the Lieb-Thirring Theorem	172

1. Introduction. In this paper and its companion [ES], we study the semiclassical limit of the Pauli operator with both electric and magnetic fields. Our main concern is to allow for nonhomogeneous magnetic fields. As we hope to illustrate, the transition from homogeneous to nonhomogeneous fields is highly nontrivial. This is so not only because of technical difficulties, but also because the case of nonhomogeneous fields is qualitatively different.

Received 30 May 1996.

1991 Mathematics Subject Classification. Primary 35P15, 35J10; Secondary 81Q20.