RANDOM MATRICES, VIRASORO ALGEBRAS, AND NONCOMMUTATIVE KP

M. ADLER, T. SHIOTA, AND P. VAN MOERBEKE

CONTENTS

0.	Introduction	379
1.	Random matrices reviewed	384
2.	KP revisited	386
3.	Vertex operators for the KP equation	389
4.	Virasoro equations satisfied by vertex operators and τ -functions	393
5.	Fay identities and symmetries	396
6.	Determinant of kernels and vertex operators	398
7.	Fredholm determinants and proof of Theorem 0.1	405
8.	Virasoro and KP: A new system of PDE's	409
9.	Proof of Theorem 0.2	416
10.	Examples	423

0. Introduction. What is the connection of random matrices with integrable systems? Is this connection really useful? The answers to these questions lead to a new and unifying approach to the theory of random matrices. Introducing an appropriate time *t*-dependence in the probability distribution of the matrix ensemble leads to vertex operator expressions for the *n*-point correlation functions (probabilities of n eigenvalues in infinitesimal intervals) and the corresponding Fredholm determinants (probabilities of no eigenvalue in a Borel subset E). The latter probability is a ratio of τ -functions for the KP equation, whose numerator satisfies partial differential equations (PDE). These PDEs *decouple* into the sum of two parts: a Virasoro-like part, depending on time only, and a Vect (S^1) -part depending on the boundary points A_i of E. Upon setting t = 0 and using the KP hierarchy to eliminate t-derivatives, these PDEs lead to a hierarchy of nonlinear PDEs, purely in terms of the A_i . These PDEs are nothing else but the KP hierarchy for which the *t*-partials, viewed as commuting operators, are replaced by noncommuting operators in the endpoints A_i of the E under consideration. When the boundary of E consists of one point, and also for

1991 Mathematics Subject Classification. 15A52, 82B44, 82O55, 35Q53, 47N30, 60H25.

Received 29 January 1997. Revision received 3 April 1997.

Adler supported by National Science Foundation grant number DMS-9503246.

Shiota supported by a Japanese Ministry of Education, Science, and Culture grant.

van Moerbeke supported by National Science Foundation grant number DMS-9503246 and by NATO, Fonds National de la Recherche Scientifique, and Francqui Foundation grants.