NONCOMMUTATIVE DEFORMATIONS OF KLEINIAN SINGULARITIES

WILLIAM CRAWLEY-BOEVEY AND MARTIN P. HOLLAND

0. Introduction. Let K be an algebraically closed field of characteristic zero and let Γ be a nontrivial finite subgroup of $\operatorname{SL}_2(K)$. Deformations of the Kleinian singularity K^2/Γ have been studied for some time, especially the semi-universal deformation (see, for example, Slodowy [34]). In this paper we define and study a family of deformations of its coordinate ring $K[x,y]^{\Gamma}$. Our rings, denoted \mathcal{O}^{λ} for $\lambda \in Z(K\Gamma)$, are, in general, noncommutative, even simple rings. For example, \mathcal{O}^1 is the fixed ring of Γ on the Weyl algebra $K\langle x,y|xy-yx=1\rangle$. However, if the trace of λ on the regular representation $K\Gamma$ is zero, then \mathcal{O}^{λ} is commutative, and (in the case $K=\mathbb{C}$) the complex analytic spaces arising from the schemes $\operatorname{Spec} \mathcal{O}^{\lambda}$ are precisely the fibres of the semiuniversal deformation.

In the special case when Γ is cyclic, a family of noncommutative deformations was studied by Hodges in [15] (see also [18], [36], and [2]). These rings are defined by generators and relations and were originally studied as generalisations of the primitive factors of the enveloping algebra of \mathfrak{sl}_2 . Hodges noted that families of deformations should exist for general Γ , but it would be impractical to find them using his methods.

In retrospect, it is easy to write down deformations of $K[x,y]^{\Gamma}$ for any Γ . The group acts naturally on the ring $K\langle x,y\rangle$ of noncommuting polynomials, so one can form the skew group algebra $K\langle x,y\rangle *\Gamma$. For $\lambda\in Z(K\Gamma)$, let \mathscr{S}^{λ} be the quotient $(K\langle x,y\rangle *\Gamma)/(xy-yx-\lambda)$. We then define $\mathscr{O}^{\lambda}=e\mathscr{S}^{\lambda}e$, where $e\in K\Gamma$ is the average of the group elements.

The ring \mathcal{O}^{λ} is naturally filtered, and it is easy to see that the associated graded algebra is isomorphic to $K[x,y]^{\Gamma}$. It follows that \mathcal{O}^{λ} is a Noetherian domain, finitely generated as a K-algebra, of Gelfand-Kirillov (GK) dimension 2, it is a maximal order in its quotient ring, and it is Auslander-Gorenstein and Cohen-Macaulay. Other properties of \mathcal{O}^{λ} depend on the incidence of λ with hyperplanes in $Z(K\Gamma)$ perpendicular to elements of the affine root system corresponding to the McKay graph [28] of Γ . To investigate this, we relate \mathcal{O}^{λ} to a family of deformations of the preprojective algebra because these deformations can be studied using a new type of reflection functor. We begin by defining the McKay graph and the deformed preprojective algebra.

Let N_0, \ldots, N_n be the irreducible representations of Γ with N_0 trivial, and let V be the natural 2-dimensional representation of Γ . The $McKay\ graph$ of Γ is

Received 18 November 1996. Revision received 18 February 1997. 1991 Mathematics Subject Classification. Primary 16S30, 32S30; Secondary 16G20