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KAZHDAN-PATTERSON LIFTING FOR GL(n,R)

JEFFREY ADAMS AND JING-SONG HUANG

§1. Introduction. Kazhdan and Patterson have conjectured the existence of a
lifting theory, taking representations of GL(n,JF) to representations of the non-
linear covering groups of GL(n,IF). We consider the case IF =IR. We work
directly on the level of global characters.

Let G=GL(n,R) and p: G — G be 1ts nonlinear twofold cover (see §2 for
details). For s: G — G a section, g — s(g) defines a map from conjugacy classes
in G to conjugacy classes in G, independent of the choice of s. As in [6 §2], we
modify this by a certain function u : G — ker(p) to obtain t(g) = s(g)*u(g).

Let 7 be a virtual module for G with global character 0, viewed as a function
on the regular semisimple elements. For g, a regular semisimple element in the
image of ¢, let

Al

(L1) t.(6x)(g) = 202 " O.(h),
he =0y 5O
where A is the usual Weyl denominator. Let
1 neven, 5 4 )
(1.2) Zo—{il n odd, Zy=p~(Zo);

this is a central subgroup of G. Fix a genuine character y, of Zo; there are two
such choices if n is odd, and one if n is even. For g € t(G), z € Z, define

(1.3) t:(02)(g2) = t.(Ox)(9)x0(2) -

Finally, set t.(®,)(g) = 0 if g is not in the set t(G)Z,

The conjecture of Kazhdan and Patterson [6, end of §4] says that if = is irre-
ducible, then t.(n) is an irreducible representation, up to sign, or is zero. Our
main result is the following.

THEOREM 1.4. Let © be an irreducible unitary representation of G. Then t,(n)
is either zero or an irreducible unitary representation, up to sign. It may be com-
puted explicitly (Proposition 5.4).
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