MORDELL-WEIL GROUPS IN PROCYCLIC EXTENSIONS OF A FUNCTION FIELD

LISA A. FASTENBERG

Let K be a number field, p a prime number, and L the cyclotomic \mathbb{Z}_p extension of K. Mazur made the following conjecture.

CONJECTURE [M]. Given an elliptic curve E/K with good reduction at p, then the group of rational points E(L) is finitely generated.

In this paper, we consider a function field analogue of Mazur's conjecture. We show, in some special cases, that the Mordell-Weil group is finitely generated in certain towers of cyclic extensions of a 1-dimensional function field over C. We prove the following.

THEOREM 1. Let $K = K_1 = \mathbb{C}(T)$, $K_r = \mathbb{C}(T^{1/r})$, and $L = \bigcup_{r=1}^{\infty} K_r$. Let E/K be an elliptic curve, and assume that away from $T = 0, \infty$, the reduction of E is either good or of multiplicative type. Further, we assume one of the following.

(1) Letting $n_P = |\operatorname{ord}_P(j_E)|$, then

$$\sum_{P\neq 0,\infty,n_P\neq 0} (1-n_P/6) < 1;$$

or

(2) E has multiplicative reduction at T = 1, -1, there are no other primes of bad reduction, and the automorphism τ of C(T) defined by $\tau(T) = 1/T$ lifts to an automorphism of E.

Then E(L) is finitely generated.

Remark. Such curves arise in natural contexts. For example, the elliptic curve over $\mathbb{C}[T]$ defined by the Weierstrass equation

$$Y^2 = 4X^3 - 27XT - 27T$$

is (up to an isomorphism of the base) the elliptic modular surface associated to $PSL(2, \mathbb{Z})$ (see [Sh1]) and satisfies condition (1). The curve

$$Y^2 = 4X^3 - 3X + (T + 1/T)$$

Received 15 December 1995. Revision received 31 August 1996.

Author's work supported by a National Physical Science Consortium Fellowship, the National Security Agency, and a Yale University Fellowship.