COMPACT EINSTEIN-WEYL MANIFOLDS WITH LARGE SYMMETRY GROUP

ANDERS BISBJERG MADSEN, HENRIK PEDERSEN, YAT SUN POON, AND ANDREW SWANN

1. Introduction. The Einstein-Weyl equations are a conformally invariant generalisation of the Einstein equations, introduced by Weyl [27]. They have been thoroughly studied in dimension 3 [4], [8], [10], [12], [24], [25], [26], where it is known that any solution on a compact manifold is either a compact quotient of hyperbolic 3-space \mathscr{H}^3 or has a cohomogeneity-one action of the 2-torus T^2 . Furthermore, in any dimension, a compact Einstein-Weyl manifold that is not Einstein has a nontrivial symmetry [25]. To find new examples in higher dimensions, it is therefore natural to look for solutions with a high degree of symmetry.

In this paper we will give a full classification of the compact 4-dimensional Einstein-Weyl structures for which the symmetry group is at least 4-dimensional. Restricting to dimension 4 allows us to take advantage of various topological consequences of the Einstein-Weyl equations [23], [21], [7]. The assumption that the group of symmetries is at least 4-dimensional implies that the solutions are either homogeneous or have cohomogeneity one. Our results also sharpen previous results [9], [2] on 4-dimensional Einstein metrics (Theorem 3.1) and correct the topological classification [20] of cohomogeneity-one 4-manifolds (Remark 6.4).

Let (M, [g]) be a conformal manifold. A torsion-free connection D preserving the conformal class [g] is called a Weyl connection. Fixing a choice of Riemannian metric g in the conformal class, we obtain a 1-form ω from the equation $Dg = \omega \otimes g$. Conversely, the 1-form ω , together with the Levi-Civita connection ∇ of g, determines D by

$$D = \nabla - \frac{1}{2} (\omega \lor \operatorname{Id} - g \otimes \omega^{\sharp}),$$

where ω^{\sharp} is the vector field such that $\omega = g(\omega^{\sharp}, \cdot)$, and $(\omega \vee \mathrm{Id})(X, Y) = \omega(X)Y + \omega(Y)X$. Under a conformal change $g \mapsto \exp(\lambda)g$, we have $\omega \mapsto \omega + d\lambda$, and so it makes sense to call *D* closed if $d\omega = 0$ and exact if ω is exact.

The Einstein-Weyl equations state

$$Sr^D = \Lambda g$$
,

Received 25 January 1996. Revision received 21 June 1996. Second- and third-named authors partially supported by NATO grant CRG-950040.