MODULI OF EQUIVARIANT ALGEBRAIC VECTOR BUNDLES OVER A PRODUCT OF AFFINE VARIETIES

KAYO MASUDA

§0. Introduction. In this paper, we consider the base field \mathbb{C} of complex numbers. Let G be a reductive affine algebraic group and X a G-stable affine cone in a G-module. We denote by $\operatorname{Vec}_{G}(X, Q)$ the set of algebraic G-vector bundles over X whose fiber at the origin (the summit of the cone) is a G-module Q, and by $V E C_{G}(X, Q)$ the set of G-isomorphism classes in $\operatorname{Vec}_{G}(X, Q)$. We denote by $[E]$ the isomorphism class of $E \in \operatorname{Vec}_{G}(X, Q)$. The equivariant Serre problem asks whether $\operatorname{VEC}_{G}(X, Q)$ is trivial when X is a G-module. When G is abelian and X is a G-module, Masuda, Moser-Jauslin, and Petrie [MMP1] have shown that $V E C_{G}(X, Q)$ is trivial. However, for a nonabelian group $G, V E C_{G}(X, Q)$ is not trivial even if X is a G-module (see [S], [Kn], [MP], [MMP2]). Little is known on the moduli space $V E C_{G}(X, Q)$, especially when the dimension of the algebraic quotient space $X / / G$ is greater than one. Even if X is a G-module, to classify elements in $\operatorname{VEC}_{G}(X, Q)$, when $\operatorname{dim} X / / G \geqslant 2$, is an open problem. When X is a G-module with one-dimensional quotient, Schwarz [S] showed that $V E C_{G}(X, Q) \cong \mathbb{C}^{p}$ for a nonnegative integer p (for details, see Kraft and Schwarz [KS]). The result of Schwarz [S] can be extended to the case where X is a G-stable affine cone with smooth one-dimensional quotient in a G-module. More generally, when X is a weighted G-cone with smooth one-dimensional quotient [MMP3] (see $\S 1$ for the definition), we have the following theorem.

Theorem A ([M1]; cf. [S], [KS]). Let X be a weighted G-cone with smooth one-dimensional quotient and Q be a G-module. Then $\operatorname{VEC}_{G}(X, Q) \cong \mathbb{C}^{p}$ for a nonnegative integer p. Moreover, there is a G-vector bundle \mathfrak{B} over $X \times \mathbb{C}^{p}$ with fiber Q such that the map $\mathbb{C}^{p} \ni z \mapsto\left[\left.\mathfrak{B}\right|_{X \times\{z\}}\right] \in V E C_{G}(X, Q)$ gives a bijection.

Let X, p, and \mathfrak{B} be as in Theorem A. We denote by $\operatorname{Mor}\left(\mathbb{A}^{m}, \mathbb{C}^{p}\right)$ the set of morphisms from affine m-space \mathbb{A}^{m} to \mathbb{C}^{p}. Then there is a map

$$
\Phi: \operatorname{Mor}\left(\mathbb{A}^{m}, \mathbb{C}^{p}\right) \rightarrow V E C_{G}\left(X \times \mathbb{A}^{m}, Q\right)
$$

defined by $\Phi(f)=\left[\left(\mathrm{id}_{X} \times f\right)^{*} \mathfrak{B}\right]$ for $f \in \operatorname{Mor}\left(\mathbb{A}^{m}, \mathbb{C}^{p}\right)$. By Theorem A , it is bijective when $m=0$. Moreover, Theorem A implies that Φ is injective. Masuda and Petrie have shown that Φ is bijective in some examples. In [M2], we showed that Φ is bijective when Q is multiplicity free with respect to a principal isotropy

