CORRELATION FOR SURFACES OF GENERAL TYPE

BRENDAN HASSETT

1. Introduction. The purpose of this paper is to prove the following theorem.

Theorem 1.1 (Correlation theorem for surfaces). Let $f: X \to B$ be a proper morphism of integral varieties, whose general fiber is an integral surface of general type. Then for n sufficiently large, X_B^n admits a dominant rational map h to a variety W of general type such that the restriction of h to a general fiber of f^n is generically finite.

This theorem has a number of geometric and number-theoretic consequences which will be discussed in the final section of this paper. In particular, assuming Lang's conjecture on rational points of varieties of general type, we prove a uniform bound on the number of rational points on a surface of general type that are not contained in rational or elliptic curves.

The inspiration for this paper is the work of Caporaso, Harris, and Mazur [CHM], where the correlation theorem is proved for families of curves of genus $g \ge 2$. The same result is conjectured for families of varieties of general type of any dimension. The paper [CHM] contains many of the ideas needed for a proof of the general conjecture. However, at one point the argument hinges on the fact that the fibers of the map are curves: it invokes the existence of a "nice" class of singular curves, the stable curves. For the purpose of this discussion, "nice" means two things.

- 1. Given any proper morphism $f: X \to B$ whose generic fiber is a smooth curve of genus $g \ge 2$, there exists a generically finite base change $B' \to B$ so that the dominating component $X' \subset X \times_B B'$ is birational to a family of stable curves over B'.
- 2. Let $X \to B$ be a family of stable curves, smooth over the generic point. Then the fiber products X_B^n have canonical singularities.

For the purpose of generalizing to higher dimensions, we make the following definitions.

Let \mathscr{C} be a class of singular varieties.

 $\mathscr C$ is *inclusive* if for any proper morphism $f\colon X\to B$ whose generic fiber is a variety of general type, there is a generically finite base change $B'\to B$ so that the dominating component $X'\subset X\times_B B'$ is birational to a family $Y'\to B'$ with fibers in $\mathscr C$.

Received 15 September 1995. Revision received 16 January 1996. This work was partially supported by a National Science Foundation Graduate Fellowship.