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COMPOSITE DIFFERENTIABLE FUNCTIONS

EDWARD BIERSTONE, PIERRE D. MILMAN,
AND WIESLAW PAWLUCKI

1. Introduction. In the early 1940s, Whitney proved that every even
function f(x) can be written f(x)= g(x2), where g is c [28]. About twenty
years later, Glaeser (answering a question posed by Thom in connection with the
c preparation theorem) showed that a coo function f(x) =f(xl,..., Xm) which
is invariant under permutations of the coordinates can be expressed f(x)=
g(a(x),..., am(X)), where g is c and the ai(x) are the elementary symmetric
polynomials [10]. Of course, not every coo function f(x) =f(x,... ,Xm) which
is constant on the fibres of a (proper or semiproper) real analytic mapping
y qg(x), y (y,..., Yn), can be expressed as a composite f g o qg, where g
is oo. We will say that q9 has the c composite function property if every coo
function f(x) which is "formally a composite with o" (see Definition 1.1 below)
can be written f g o qg, where g(y) is c. The theorem of Glaeser asserts that
a semiproper real analytic mapping o which is generically a submersion has the
coo composite function property. The c composite function property depends
only on the image X of qg, which is a closed subanalytic set [1] (cf. Corollary 1.5
below). Bierstone and Milman have proved, more generally, that a closed "Nash
subanalytic" set X has the coo composite function property [1] (cf. [19], [23],
[26]); the class of Nash subanalytic sets includes all semianalytic sets. The coo
composite function property is equivalent to several other natural geometric and
algebraic conditions on a closed subanalytic set [6], in particular, to a formal
semicoherence property (a stratified real version of the coherence theory of Oka
and Cartan). Pawtucki has constructed an example of a closed subanalytic set
which is not semicoherent [20]. Thus the c composite function property does
not hold in general, but distinguishes an important class of subanalytic sets.

In this article, we introduce a new point of view towards Glaeser’s theorem,
with respect to which we can formulate a ,,cCk composite function property"
that is satisfied by all semiproper real analytic mappings (Theorems 1.2 and 1.3
below). As a consequence, we see that a closed subanalytic set X satisfies the coo
composite function property if and only if the ring c(X) ofc functions on X
is the intersection of all finite differentiability classes (Corollary 1.5).

Let k IN u {oo}, where IN denotes the nonnegative integers. Suppose that A

Received 5 July 1995.
Bierstone and Milman were partially supported by NSERC operating grants OGP 0009070 and

OGP 0008949.

607


