A CRITICAL GROWTH RATE FOR THE PLURICOMPLEX GREEN FUNCTION

SIEGFRIED MOMM

Introduction. For each bounded convex domain G in \mathbb{C}^N which contains the origin, the pluricomplex Green function g with pole at the origin is the largest negative plurisubharmonic function on G for which $g - \log |z|$ is bounded from above. It was introduced by Lempert [7] while looking for a several variables substitute for the Riemann conformal mapping of G onto the disc. In the present paper we relate the boundary behavior of g with the following functional analysis problem:

Let A(G) denote the Fréchet space of all analytic functions on G. If $P(z) = \sum_{\alpha \in \mathbb{N}_0^N} a_{\alpha} z^{\alpha}$ is a nonzero entire function on \mathbb{C}^N of at most order one and zero type, Martineau [9] proved that

$$P(D)f := \sum_{\alpha \in \mathbb{N}_0^N} a_{\alpha} f^{(\alpha)}$$

defines a surjective continuous linear map P(D): A(G) oup A(G). We consider the problem whether there is a continuous linear map R: A(G) oup A(G) which assigns to each $h \in A(G)$ a solution of the equation P(D)R(h) = h. Such a map is called a "solution operator" of P(D): A(G) oup A(G).

In the 1960s Trèves [25] proved that each partial differential operator (of finite order) admits a solution operator on $A(\mathbb{C}^N)$. This result was extended in the 1980s to partial differential operators of infinite order. For N=1 this has been done by Taylor [24] and Schwerdtfeger [21], for N>1 by Meise and Taylor [11]. An extension of these results to convex Reinhardt domains G of \mathbb{C}^N is contained in [13]. In [14] we characterized for an arbitrary convex domain G of \mathbb{C} when P(D) admits a solution operator on A(G).

To formulate our result for a given bounded convex domain G of \mathbb{C}^N which contains the origin, let $G_x := \{z \in G | g(z) < x\}, \ x < 0$, denote the level sets of the pluricomplex Green function g. If H is the support function of the convex set G, we consider, moreover, a certain extremal plurisubharmonic function v_H , which was investigated in [17]. v_H is the largest plurisubharmonic function on \mathbb{C}^N with $v_H \leq H$ and such that $v_H - \log(1 + |z|)$ is bounded from above. Functions like v_H have been introduced by Siciak [22].

THEOREM. For each bounded convex domain G of \mathbb{C}^N which contains the origin, the following assertions are equivalent:

Received 30 March 1993.