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MIXING, COUNTING, AND EQUIDISTRIBUTION IN
LIE GROUPS

ALEX ESKIN AND CURT MCMULLEN

1. Introduction. Let F c G Aut(IH2) be a group of isometries of the hyper-
bolic plane IH2 such that E F\IH2 is a surface of finite area. Then:

I. The geodesic flow is mixing on the unit tangent bundle Tt (E) F\G.
II. The sphere S(x, R) of radius R about a point x 6 E becomes equidistributed

as R 0.

III. The number of points N(R) in an orbit Fv which lie within a hyperbolic ball
B(p, R) c IH2 has the asymptotic behavior

N(R)
area(B(p, R))

area(Z)

(See 2 for more detailed statements).
The purpose of this paper is to discuss results similar to those above where the

hyperbolic plane is replaced by a general affine symmetric space V G/H. This
setting includes the classical Riemannian symmetric spaces (when H is a maximal
compact subgroup) as well as spaces with indefinite invariant metrics.
A simple non-Riemannian example is obtained by letting V be the space of

oriented geodesics in the hyperbolic plane. Then H A, the group of diagonal
matrices in G PSL2(IR). In this case F\G/H is not even Hausdorff.

This setting includes counting theorems for integral points on a large class of
homogeneous varieties (e.g. those associated to quadratic forms) and allows us to
prove some of the main theorems of [DRS] by elementary arguments (see 6).

Statement of Results. Let G be a connected semisimple Lie group with finite
center and let H G be a closed subgroup such that G/H is an affine symmetric
space (cf. IF-J], [Sch]). This means there is an involution a: G --, G such that H is
the fixed-point set of a:

H (g: a(g)= g}.

(By involution we mean a Lie group automorphism such that 0-2 id.)
Let F c G be a lattice, i.e. a discrete subgroup such that the volume ofX F\G

is finite.
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