MIXING, COUNTING, AND EQUIDISTRIBUTION IN LIE GROUPS

ALEX ESKIN AND CURT MCMULLEN

1. Introduction. Let $\Gamma \subset G = \operatorname{Aut}(\mathbb{H}^2)$ be a group of isometries of the hyperbolic plane \mathbb{H}^2 such that $\Sigma = \Gamma \setminus \mathbb{H}^2$ is a surface of finite area. Then:

- I. The geodesic flow is mixing on the unit tangent bundle $T_1(\Sigma) = \Gamma \setminus G$.
- II. The sphere S(x, R) of radius R about a point $x \in \Sigma$ becomes equidistributed as $R \to \infty$.
- III. The number of points N(R) in an orbit Γv which lie within a hyperbolic ball $B(p, R) \subset \mathbb{H}^2$ has the asymptotic behavior

$$N(R) \sim \frac{\operatorname{area}(B(p, R))}{\operatorname{area}(\Sigma)}$$

(See §2 for more detailed statements).

The purpose of this paper is to discuss results similar to those above where the hyperbolic plane is replaced by a general affine symmetric space V = G/H. This setting includes the classical Riemannian symmetric spaces (when H is a maximal compact subgroup) as well as spaces with indefinite invariant metrics.

A simple non-Riemannian example is obtained by letting V be the space of oriented geodesics in the hyperbolic plane. Then H = A, the group of diagonal matrices in $G = PSL_2(\mathbb{R})$. In this case $\Gamma \setminus G/H$ is not even Hausdorff.

This setting includes counting theorems for integral points on a large class of homogeneous varieties (e.g. those associated to quadratic forms) and allows us to prove some of the main theorems of [DRS] by elementary arguments (see §6).

Statement of Results. Let G be a connected semisimple Lie group with finite center and let $H \subset G$ be a closed subgroup such that G/H is an affine symmetric space (cf. [F-J], [Sch]). This means there is an involution $\sigma: G \to G$ such that H is the fixed-point set of σ :

$$H = \{g \colon \sigma(g) = g\}.$$

(By *involution* we mean a Lie group automorphism such that $\sigma^2 = id$.)

Let $\Gamma \subset G$ be a *lattice*, i.e. a discrete subgroup such that the volume of $X = \Gamma \setminus G$ is finite.

Received 11 May 1992. Revision received 15 January 1993. McMullen's research partially supported by the NSF and the Alfred P. Sloan Foundation.