AMPLE AND SPANNED VECTOR BUNDLES WITH LARGE c_1^2 RELATIVE TO c_2 ON SURFACES

ATSUSHI NOMA

Introduction. Let *E* be an ample and spanned vector bundle of rank $r \ge 2$ on a smooth projective surface *X* over the complex number field \mathbb{C} . Here *E* is said to be ample if the tautological line bundle $\mathcal{O}_{\mathbb{P}}(1)$ of the projective space bundle $\mathbb{P} = \mathbb{P}_X(E)$ is ample. The problem of classifying the pair (X, E) with the small top Chern class $c_2(E)$ has been considered by several authors, in connection with some properties of the adjoint bundle $K_X \otimes \det(E)$. In fact, the pair (X, E) with $c_2(E) \le 2$ are classified explicitly (see [LS], [W], [LM], [N], [LR]). So we are interested in the classification of (X, E) with the top Chern class $c_2(E) \ge 3$. Toward this classification, the purpose of this paper is to establish an optimal bound on $c_1(E)^2$ in terms of $c_2(E)$, by describing the pair (X, E) with large $c_1(E)^2$ relative to $c_2(E)$.

The result is the following one.

THEOREM. Let E be an ample and spanned vector bundle of rank $r \ge 2$ on a smooth projective surface X over the complex number field. Then $c_1(E)^2 < (c_2(E) + 2)^2/2$ holds unless

- (1) $c_2(E)$ is even and there exists a finite morphism $\psi: X \to \mathbb{P}^2$ of degree 2 such that $E \cong \psi^*(\mathcal{O}(1) \oplus \mathcal{O}(c_2(E)/2))$,
- (2) $(X, E) \cong (\mathbb{P}^2, \mathcal{O}(1) \oplus \mathcal{O}(c_2(E))), or$
- (3) X is isomorphic to a geometrically ruled surface P_C(F) over an elliptic curve C with the projection p: P_C(F) → C and with the tautological line bundle O(1), and E ≅ p*(S) ⊗ O(1). Here F and S are indecomposable rank-2 vector bundles on C of degree 1. (Hence c₂(E) = 2. And E is actually ample and spanned, as proved in [BL]; see also [N].)

Consequently, $c_1(E)^2 \leq (c_2(E) + 1)^2$ holds for every (X, E), and the equality holds only in case (2).

This leads to a classification of ample and spanned bundles E with $c_1(E)^2 > 4c_2(E)$ and $c_2(E) = 3$, 4.

COROLLARY. Let E be an ample and spanned vector bundle of rank $r \ge 2$ on a smooth projective surface X over the complex number field. Assume that $c_1(E)^2 \ge 4c_2(E) + 1$.

(1) If $c_2(E) = 3$, then (X, E) is isomorphic to $(\mathbb{P}^2, \mathcal{O}(1) \oplus \mathcal{O}(3))$.

(2) If $c_2(E) = 4$, then (X, E) is one of the following:

Received 26 May 1992. Revision received 10 September 1992.