UNIQUE CONTINUATION AND REGULARITY AT THE BOUNDARY FOR HOLOMORPHIC FUNCTIONS

SERGE ALINHAC, M. S. BAOUENDI*, AND LINDA PREISS ROTHSCHILD*

§0. Introduction and main results. The function $f(z) = \exp(-1/z^{1/3})$ is holomorphic in the upper half-plane, smooth in its closure, and vanishes of infinite order at the origin. We shall show (Theorem 1) that if a function h has these properties but also maps an interval containing the origin into a nonsingular C^2 curve, then h must vanish identically. When the curve is real analytic this reduces to the Schwarz reflection principle. We state our first result for a vector valued function.

We recall that if M is a submanifold of \mathbb{C}^n of class C^1 , we say that M is totally real if $T_m \cap JT_m = \{0\}$ for all $m \in M$, where T_m is the tangent space of M at m and J is the usual multiplication by $\sqrt{-1}$.

We define the Lipschitz space $\Lambda_{\alpha}(\mathbb{R}^n)$, $\alpha > 0$, as in, e.g., Stein [12]. In particular, $f \in \Lambda_1(\mathbb{R}^n)$ if $f \in L^{\infty}(\mathbb{R}^n)$ and there is a constant A such that $\|f(x+t) + f(x-t) - 2f(x)\|_{\infty} \leq A|t|$. Similarly $f \in \Lambda_k(\mathbb{R}^n)$, k a positive integer greater than 1, if $\partial f/\partial x_j \in \Lambda_{k-1}(\mathbb{R}^n)$. For α nonintegral, $\Lambda_{\alpha}(\mathbb{R}^n)$ is the usual Hölder space. A similar definition can be given for $\Lambda_{\alpha}(F)$, where F is a closed set of \mathbb{R}^n with sufficiently smooth boundary.

Our first theorem gives both regularity and unique continuation results.

THEOREM 1. Let Ω be an open neighborhood of 0 in \mathbb{C} , $\Omega^+ = \Omega \cap \{w = s + it: t > 0\}$, and M' a totally real manifold of \mathbb{C}^n of class C^k , $k \ge 2$, with $0 \in M'$. If $h: \overline{\Omega^+} \to \mathbb{C}^n$ is continuous and holomorphic in Ω^+ and maps $\overline{\Omega^+} \cap \mathbb{R}$ into M' then $h \in \Lambda_k(\overline{\Omega'^+})$ for every open Ω' relatively compact in Ω . Furthermore, if h vanishes of infinite order at the origin, i.e., $h(w) = O(|w|^N)$ for every N, then h vanishes identically in the connected component of the origin in $\overline{\Omega^+}$.

If M is a totally real manifold of class C^2 , $M \subset \mathbb{C}^p$ of real dimension $p, 0 \in M$, then M is given locally (see Lemma 1.1) by

$$(0.1) M = \{ w \in \mathbb{C}^p : \operatorname{Im} w = \varphi(\operatorname{Re} w) \}$$

for some $\varphi \in C^2(U)$, U a neighborhood of the origin in \mathbb{R}^p , φ real valued with $\varphi(0) = \varphi'(0) = 0$. A wedge \mathscr{W} of edge M is then defined as a set of the form

$$\mathscr{W} = \{ w \in \mathscr{O} : \operatorname{Im} w - \varphi(\operatorname{Re} w) \in \Gamma \},$$

Received October 3, 1989.

^{*}Supported by NSF Grant DMS 8901268.