THE FUNDAMENTAL LEMMA FOR STABLE BASE CHANGE

LAURENT CLOZEL

1. Introduction. Let F be a p-adic field (local, non-Archimedian, of characteristic zero), \mathcal{O}_F its ring of integers, ϖ_F a uniformizing parameter.

Let G be an unramified, connected reductive group over F. We will assume that G arises by base extension from a smooth reductive group scheme over \mathcal{O}_F ; then $G(\mathcal{O}_F)$ is defined, as well as $H(\mathcal{O}_F)$ when H is a subgroup of G that can be obtained by base extension from a subgroup scheme defined over \mathcal{O}_F : in particular, this will apply to parabolic subgroups of G, their unipotent radicals or Levi components.

Let E/F be an unramified extension of degree l. We then have the base change map

$$b: \mathscr{H}_E \to \mathscr{H}_F$$

between the Hecke algebras of functions on G(E), G(F) invariant by $G(\mathcal{O}_E)$, $G(\mathcal{O}_F)$ (cf. e.g. [26]). We will write $K_L = G(\mathcal{O}_L)$, L = E, F. We denote by σ a generator of Gal(E/F) (for example the Frobenius element) and its action on F-subgroups of G(E). Recall [25] that there is a norm map \mathcal{N} sending (stable twisted conjugacy classes of) elements in G(E) to stable conjugacy classes of elements in G(F). For a semisimple element $\gamma \in G(F)$, its stable orbital integral is defined [26]. If γ is strongly regular, it is just

(1.1)
$$\Phi_f^{st}(\gamma) = \sum_{\gamma'} \Phi_f(\gamma');$$

 $f \in C_c^{\infty}(G(F))$, and the sum runs over a set of representatives for the conjugacy classes within the stable conjugacy class of γ . Analogously, we define

(1.2)
$$\Phi_{\varphi,\sigma}^{st}(\delta) = \sum_{\delta'} \Phi_{\varphi,\sigma}(\delta')$$

for $\delta \in G(E)$ such that $\mathcal{N}\delta$ is regular: $\varphi \in C_c^{\infty}(G(E))$, $\Phi_{\varphi,\sigma}(\delta')$ denotes the twisted orbital integral of φ at δ' , and the sum runs over representatives for the σ -conjugacy classes within the stable σ -conjugacy class of δ .

The twisted centralizers, and the centralizers, that occur in the definition of the (twisted) orbital integrals, are all canonically isomorphic: one uses this isomorphism to define compatible Haar measures on them. On G(E), G(F) one takes the Haar