A CONVEXITY THEOREM FOR ISOSPECTRAL MANIFOLDS OF JACOBI MATRICES IN A COMPACT LIE ALGEBRA

A. M. BLOCH, H. FLASCHKA, AND T. RATIU

1. Introduction. We begin by presenting an example which will illustrate most of our results and some of the technique. Let K be the compact group SU(l + 1), and let \mathscr{K} be its Lie algebra su(l+1). Later on, \mathscr{K} will be the compact form of an arbitrary complex semisimple Lie algebra. A Jacobi matrix is a (skew-hermitian) tri-diagonal matrix $L \in \mathscr{K}$

$$L = \begin{pmatrix} i\beta_1 & a_1 & 0 & \dots & 0 \\ -\overline{a}_1 & i\beta_2 & a_2 & \dots & 0 \\ 0 & -\overline{a}_2 & i\beta_3 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & a_l \\ 0 & 0 & \dots & -\overline{a}_l & i\beta_{l+1} \end{pmatrix}$$
(1)

(the a_i are complex, the β_i are real and satisfy $\sum \beta_i = 0$.) Let Jac be the set of Jacobi matrices. As a special case, we could choose the a_i to be pure imaginary. Up to a factor of $\sqrt{-1}$, the matrix L would then be real, symmetric, and tri-diagonal. An isospectral manifold is a subset of Jac consisting of Jacobi matrices with fixed eigenvalues $i\lambda_1, \ldots, i\lambda_{l+1}$. All the skew-hermitian matrices with those eigenvalues are obtained from $\Lambda = \text{diag}(i\lambda_1, \dots, i\lambda_{l+1})$ by conjugation; they lie on an orbit of the adjoint action of K on \mathcal{K} ,

$$\mathcal{O}_{\Lambda} = \{ k \Lambda k^{-1} \, | \, k \in K \}.$$

The Jacobi matrices conjugate to Λ are a small submanifold of \mathcal{O}_{Λ} . We require from now on that all eigenvalues $i\lambda_i$ be distinct. In that case, dim $\mathcal{O}_{\Lambda} = l(l+1)$, while the set of Jacobi matrices conjugate to Λ has dimension 2l.

For sake of exposition, we will assume that the matrix (1) has the form

$$i \times \begin{pmatrix} \beta_1 & a_1 & 0 & \dots & 0 \\ a_1 & \beta_2 & a_2 & \dots & 0 \\ 0 & a_2 & \beta_3 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & a_l \\ 0 & 0 & \dots & a_l & \beta_{l+1} \end{pmatrix}.$$
 (2)

Received September 14, 1989.