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GLOBAL EXISTENCE OF SMALL ANALYTIC SOLUTIONS
TO NONLINEAR SCHRODINGER EQUATIONS

NAKAO HAYASHI

1. Introduction. In this paper we consider the following nonlinear Schr6dinger
equation in n (n >_ 2):

idtu + 1/2Au F(u, Vu, fi, Vu), (t, x) 6 x n, (1.1)

u(O, x) O(x), x ". (1.2)

Here the nonlinear term F: C x C" x C x C" C is a polynomial of degree 3
satisfying

and

IF(u, Vu, , Vu)l C’(lul + IVul)3

F(cou, coVu, -, coVu) coF(u, Vu, , Vu),

for any complex number 09 with Iol 1, and V stands for the nabla with respect to x.
Our main purpose in this paper is to discuss the global existence and analyticity

of small solutions of (1.1)-(1.2) under a certain analytical condition on b. The proof
presented here is based on a modification of the method used in the previous paper
[2] in which we only consider the special case F lulZu. It seems that the method
of [2] does not work for (1.1)-(1.2) directly.
We state notations and function spaces used in this paper. In particular we

introduce new function spaces which help to make a proof more simple than the
previous one [2].

Notation and function spaces. We let LP() {f(x); f(x) is measurable on, Ilfll< } where Ilfll=(,lf(x)ldx)x/ if l=<p< c and Ilfll=
ess.sup{If(x)l; x } if p , and we let nm’() {f(x) L("); Ilflln-,
:ll_m IIfll, < }, where g (1,..., gn) 6 ( w {0})" is a multi-index, d
d ...,- and I1 x +"" + ,. We denote by ^ and -1 the Fourier trans-
form and inverse, respectively. For each r > 0 we denote by S(r) the strip
{ r < Im zj < r; _< j _< n} in C". For x 6 , if a complex-valued function f(x) has
an analytic continuation to S(r), then we denote this by the same letter f(z) and
if #(z) is an analytic function on S(r), then we denote the restriction of #(z) to the
real axis by g(x). We let

ALe(r) {f(z); f(z) is analytic on S(r), IlfllALg,) < },
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